Abstract

In the literature, there are well-developed estimation techniques that can be used to measure the reliability in multicomponent stress-strength models when the information about all experimental units are available. However, in real applications, only observations that exceed (or fall below) the current value may be recorded. In this article, assuming that the components of the system follow generalized Rayleigh distribution, we investigate classical and Bayesian estimation of the reliability of a multicomponent stress-strength model when the available data are reported in terms of record values. The maximum likelihood estimate of the reliability parameter and its asymptotic confidence interval are obtained. Moreover, two confidence intervals based on the parametric bootstrap methods are presented. The Bayes estimate of the reliability parameter is derived using different loss functions. Because there is no closed form for the Bayes estimate, we use the Markov chain Monte Carlo method to obtain an approximate Bayes estimate and the highest posterior density credible interval of the reliability. To evaluate the performances of different procedures, simulation studies are conducted, and an example of real data sets is provided.

References

1.
Kundu
,
D.
and
Raqab
,
M. Z.
, “
Generalized Rayleigh Distribution: Different Methods of Estimations
,”
Comput. Stat. Data. Anal.
, Vol. 
49
, No. 
1
,
2005
, pp. 
187
200
, https://doi.org/10.1016/j.csda.2004.05.008
2.
Lio
,
Y. L.
,
Chen
,
D.-G.
, and
Tsai
,
T.-R.
, “
Parameter Estimations for Generalized Rayleigh Distribution under Progressively Type-I Interval Censored Data
,”
Am. Open J. Stat.
, Vol. 
1
,
2011
, pp. 
46
57
, https://doi.org/10.4236/ojs.2011.12006
3.
Raqab
,
M. Z.
and
Madi
,
M. T.
, “
Inference for the Generalized Rayleigh Distribution Based on Progressively Censored Data
,”
J. Stat. Plann. Inference
, Vol. 
141
, No. 
10
,
2011
, pp. 
3313
3322
, https://doi.org/10.1016/j.jspi.2011.04.016
4.
Kotz
,
S.
,
Lumelskii
,
Y.
, and
Pensky
,
M.
,
The Stress–Strength Model and Its Generalizations: Theory and Applications
,
World Scientific
,
Singapore
,
2003
, 272p.
5.
Balakrishnan
,
N.
and
Lai
,
C.-D.
,
Continuous Bivariate Distributions
, 2nd ed.,
Springer
,
New York, NY
,
2009
, 688p.
6.
Pak
,
A.
,
Parham
,
G. H.
, and
Saraj
,
M.
, “
Inferences on the Competing Risk Reliability Problem for Exponential Distribution Based on Fuzzy Data
,”
IEEE Trans. Reliab.
, Vol. 
63
, No. 
1
,
2014
, pp. 
2
12
, https://doi.org/10.1109/TR.2014.2298812
7.
Surles
,
J. G.
and
Padgett
,
W. J.
, “
Inference for Reliability and Stress-Strength for a Scaled Burr Type X Distribution
,”
Lifetime Data Anal.
, Vol. 
7
, No. 
2
,
2001
, pp. 
187
200
, https://doi.org/10.1023/A:1011352923990
8.
Asgharzadeh
,
A.
,
Kazemi
,
M.
, and
Kundu
,
D.
, “
Estimation of P(X > Y) for Weibull Distribution Based on Hybrid Censored Samples
,”
Int. J. Syst. Assur. Eng. Manage.
, Vol. 
8
, Suppl. 1,
2017
, pp. 
489
498
, https://doi.org/10.1007/s13198-015-0390-2
9.
Kizilaslan
,
F.
and
Nadar
,
M.
, “
Classical and Bayesian Estimation of Reliability in Multicomponent Stress-Strength Model Based on Weibull Distribution
,”
Rev. Colomb. Estadística
, Vol. 
38
, No. 
2
,
2015
, pp. 
467
484
, https://doi.org/10.15446/rce.v38n2.51674
10.
Rao
,
G. S.
, “
Estimation of Reliability in Multicomponent Stress-Strength Model Based on Generalized Exponential Distribution
,”
Rev. Colomb. Estadística
, Vol. 
35
, No. 
1
,
2012
, pp. 
67
76
.
11.
Rao
,
G. S.
,
Aslam
,
M.
, and
Kundu
,
D.
, “
Burr-XII Distribution Parametric Estimation and Estimation of Reliability in Multicomponent Stress-Strength Model
,”
Commun. Stat. Theory Methods
, Vol. 
44
, No. 
23
,
2015
, pp. 
4953
4961
, https://doi.org/10.1080/03610926.2013.821490
12.
Nadar
,
M.
and
Kızılaslan
,
F.
, “
Estimation of Reliability in a Multicomponent Stress-Strength Model Based on a Marshall-Olkin Bivariate Weibull Distribution
,”
IEEE Trans. Reliab.
, Vol. 
65
, No. 
1
,
2016
, pp. 
370
380
, https://doi.org/10.1109/TR.2015.2433258
13.
Dey
,
S.
,
Mazucheli
,
J.
, and
Anis
,
M. Z.
, “
Estimation of Reliability of Multicomponent Stress-Strength for a Kumaraswamy Distribution
,”
Commun. Stat. Theory Methods
, Vol. 
46
, No. 
4
,
2016
, pp. 
1560
1572
, https://doi.org/10.1080/03610926.2015.1022457
14.
Rao
,
G. S.
, “
Estimation of Reliability in Multicomponent Stress-Strength Based on Generalized Rayleigh Distribution
,”
J. Mod. Appl. Stat. Methods
, Vol. 
13
, No. 
1
,
2014
, pp. 
367
379
, https://doi.org/10.22237/jmasm/1398918180
15.
Asgharzadeh
,
A.
,
Valiollahi
,
R.
, and
Raqab
,
M. Z.
, “
Estimation of Pr(Y < X) for the Two-Parameter Generalized Exponential Records
,”
Commun. Stat. Simul. Comput.
, Vol. 
46
, No. 
1
,
2014
, pp. 
379
394
, https://doi.org/10.1080/03610918.2014.964046
16.
Baklizi
,
A.
, “
Likelihood and Bayesian Estimation of Pr(X < Y) Using Lower Record Values from the Generalized Exponential Distribution
,”
Comput. Stat. Data Anal.
, Vol. 
52
, No. 
7
,
2008
, pp. 
3468
3473
, https://doi.org/10.1016/j.csda.2007.11.002
17.
Arnold
,
B. C.
,
Balakrishnan
,
N.
, and
Nagaraja
,
H. N.
,
Records
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
1998
, 344p.
18.
Efron
,
B.
,
The Jackknife, the Bootstrap and Other Resampling Plans
,
SIAM
,
Philadelphia, PA
,
1982
, 92p., https://doi.org/10.1137/1.9781611970319
19.
Hall
,
P.
, “
Theoretical Comparison of Bootstrap Confidence Intervals
,”
Ann. Stat.
, Vol. 
16
, No. 
3
,
1988
, pp. 
927
953
, https://doi.org/10.1214/aos/1176350933
20.
Gelman
,
A.
,
Carlin
,
J. B.
,
Stern
,
H. S.
, and
Rubin
,
D. B.
,
Bayesian Data Analysis
, 2nd ed.,
Chapman & Hall, London
,
UK
,
2003
, 690p.
21.
Dey
,
S.
,
Dey
,
T.
, and
Luckett
,
D. J.
, “
Statistical Inference for the Generalized Inverted Exponential Distribution Based on Upper Record Values
,”
Math. Comput. Simul.
, Vol. 
120
,
2016
, pp. 
64
78
, https://doi.org/10.1016/j.matcom.2015.06.012
22.
Wang
,
B. X.
and
Ye
,
Z.-S.
, “
Inference on the Weibull Distribution Based on Record Values
,”
Comput. Stat. Data Anal.
, Vol. 
83
,
2015
, pp. 
26
36
, https://doi.org/10.1016/j.csda.2014.09.005
This content is only available via PDF.
You do not currently have access to this content.