Abstract

Because of weight and manufacturing cost decrease, tailor welded blanks (TWBs) have great usage in different industries such as the automotive and aircraft industries. Despite the wide use of TWBs in various industries, there are some drawbacks in the formability of these blanks. Using a forming limit diagram (FLD) enables one to prevent necking and fracture of these blanks by correct selection of forming parameters. There are different numerical methods to predict the FLD of sheet metals, but the Gurson–Tvergaard–Needleman (GTN) model is a useful ductile fracture model in this field. In this study, the GTN model was used for FLD prediction of AISI 304–St 12 TWBs. An anti-inference method and a numerical simulation of the tensile test by ABAQUS software (Dassault Systèmes, Vélizy-Villacoublay, France) were firstly used for GTN parameter identification of AISI 304 and St 12 blanks. Proper parameters of the GTN model were imported to the numerical tests of FLD, which was done based on the Nakazima standard test. In the experimental part of this study, carbon dioxide laser welding was used for TWBs welding, which consists of AISI 304 and St 12 blanks with equal thicknesses of 1 mm. The numerical results were compared for FLD prediction, punch’s load-displacement curve, and the fracture position of samples with experimental ones. The results showed that there was a good agreement between the numerical prediction and the experimental results.

References

1.
Assempour
,
A.
,
Hashemi
,
R.
,
Abrinia
,
K.
,
Ganjiani
,
M.
, and
Masoumi
,
E.
, “
A Methodology for Prediction of Forming Limit Stress Diagrams Considering the Strain Path Effect
,”
Comput. Mater. Sci.
, Vol. 
45
, No. 
2
,
2009
, pp. 
195
204
, https://doi.org/10.1016/j.commatsci.2008.09.025
2.
Habibi
,
M.
,
Hashemi
,
R.
,
Fallah Tafti
,
M.
, and
Assempour
,
A.
, “
Experimental Investigation of Mechanical Properties, Formability and Forming Limit Diagrams for Tailor-Welded Blanks Produced by Friction Stir Welding
,”
J. Manuf. Processes
, Vol. 
31
,
2018
, pp. 
310
323
, https://doi.org/10.1016/j.jmapro.2017.11.009
3.
Nasiri
,
S. M. M.
,
Basti
,
A.
,
Hashemi
,
R.
, and
Darvizeh
,
A.
, “
Effects of Normal and Through-Thickness Shear Stresses on the Forming Limit Curves of AA3104-H19 Using Advanced Yield Criteria
,”
Int. J. Mech. Sci.
, Vol. 
137
,
2018
, pp. 
15
23
, https://doi.org/10.1016/j.ijmecsci.2018.01.009
4.
Rahmatabadi
,
D.
and
Hashemi
,
R.
, “
Experimental Evaluation of Forming Limit Diagram and Mechanical Properties of Nano/Ultra-Fine Grained Aluminum Strips Fabricated by Accumulative Roll Bonding
,”
Int. J. Mater. Res.
, Vol. 
108
, No. 
12
,
2017
, pp. 
1036
1044
, https://doi.org/10.3139/146.111566
5.
Karajibani
,
E.
,
Hashemi
,
R.
, and
Sedighi
,
M.
, “
Forming Limit Diagram of Aluminum-Copper Two-Layer Sheets: Numerical Simulations and Experimental Verifications
,”
Int. J. Adv. Manuf. Tech.
, Vol. 
90
, Nos. 
9–12
,
2017
, pp. 
2713
2722
, https://doi.org/10.1007/s00170-016-9585-1
6.
Hashemi
,
R.
and
Karajibani
,
E.
, “
Forming Limit Diagram of Al-Cu Two-Layer Metallic Sheets Considering the Marciniak and Kuczynski Theory
,”
Proc. Inst. Mech. Eng. B: J. Eng. Manuf
., Vol. 
232
, No. 
5
,
2016
, pp. 
848
854
, https://doi.org/10.1177/0954405416654419
7.
Parente
,
M.
,
Safdarian
,
R.
,
Santos
,
A. D.
,
Loureiro
,
A.
,
Vilaca
,
P.
, and
Jorge
,
R. M. N.
, “
A Study on the Formability of Aluminum Tailor Welded Blanks Produced by Friction Stir Welding
,”
Int. J. Adv. Manuf. Technol.
, Vol. 
83
, Nos. 
9–12
,
2016
, pp. 
2129
2141
, https://doi.org/10.1007/s00170-015-7950-0
8.
Safdarian Korouyeh
,
R.
,
Moslemi Naeini
,
H.
, and
Liaghat
,
G.
, “
Forming Limit Diagram Prediction of Tailor-Welded Blank Using Experimental and Numerical Methods
,”
J. Mater. Eng. Perform.
, Vol. 
21
, No. 
10
,
2012
, pp. 
2053
2061
, https://doi.org/10.1007/s11665-012-0156-9
9.
Gurson
,
A. L.
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
J. Eng. Mater. Technol.
, Vol. 
99
, No. 
1
,
1977
, pp. 
2
15
, https://doi.org/10.1115/1.3443401
10.
Slimane
,
A.
,
Bouchouicha
,
B.
,
Benguediab
,
M.
, and
Slimane
,
S.-A.
, “
Parametric Study of the Ductile Damage by the Gurson-Tvergaard–Needleman Model of Structures in Carbon Steel A48-AP
,”
J. Mater. Res. Technol.
, Vol. 
4
, No. 
2
,
2015
, pp. 
217
223
, https://doi.org/10.1016/j.jmrt.2014.12.011
11.
Alegre
,
J. M.
,
Cuesta
,
I. I.
, and
Bravo
,
P. M.
, “
Implementation of the GTN Damage Model to Simulate the Small Punch Test on Pre-cracked Specimens
,”
Procedia Eng.
, Vol. 
10
,
2011
, pp. 
1007
1016
, https://doi.org/10.1016/j.proeng.2011.04.166
12.
He
,
M.
,
Li
,
F.
, and
Wang
,
Z.
, “
Forming Limit Stress Diagram Prediction of Aluminum Alloy 5052 Based on GTN Model Parameters Determined by In Situ Tensile Test
,”
Chin. J. Aeronaut.
, Vol. 
24
, No. 
3
,
2011
, pp. 
378
386
, https://doi.org/10.1016/S1000-9361(11)60045-9
13.
Jiang
,
W.
,
Li
,
Y.
, and
Su
,
J.
, “
Modified GTN Model for a Broad Range of Stress States and Application to Ductile Fracture
,”
Eur. J. Mech. A. Solids
, Vol. 
57
,
2016
, pp. 
132
148
, https://doi.org/10.1016/j.euromechsol.2015.12.009
14.
Safdarian
,
R.
, “
Forming Limit Diagram Prediction of 6061 Aluminum by GTN Damage Model
,”
Mech. Ind.
, Vol. 
19
, No. 
2
,
2018
, 202, https://doi.org/10.1051/meca/2018006
15.
Chen
,
Z.
and
Dong
,
X.
, “
The GTN Damage Model Based on Hill’48 Anisotropic Yield Criterion and Its Application in Sheet Metal Forming
,”
Comput. Mater. Sci.
, Vol. 
44
, No. 
3
,
2009
, pp. 
1013
1021
, https://doi.org/10.1016/j.commatsci.2008.07.020
16.
Hu
,
Y.-M.
,
Chen
,
M.-Z.
,
Xiao
,
Y.
,
Xiao
,
J.
,
Tan
,
X.
,
Tang
,
Q.
,
Zhou
,
Y.-E.
, and
Cui
,
T.-S.
, “
Parameters Determination of GTN Model and Damage Analysis of Aluminum Alloy 6016 Sheet Metal
,” presented at the
International Conference on Material Science and Applications (ICMSA 2015)
, Suzhou, China, June 13–14, 2015,
Atlantis Press
,
Paris, France
, 1080p.
17.
Amaral
,
R.
,
Teixeira
,
P.
,
Azinpour
,
E.
,
Santos
,
A. D.
, and
Cesar de Sa
,
J.
, “
Evaluation of Ductile Failure Models in Sheet Metal Forming
,” presented at the
NUMIFORM: 2016 12th International Conference on Numerical Methods in Industrial Forming Processes
, Troyes, France, July 4–7,
2016
,
University of Technology of Troyes
,
Troyes, France
, 03004.
18.
Lemaitre
,
J.
, “
A Continuous Damage Mechanics Model for Ductile Fracture
,”
J. Eng. Mater. Technol.
, Vol. 
107
, No. 
1
,
1985
, pp. 
83
89
, https://doi.org/10.1115/1.3225775
19.
Johnson
,
G. R.
and
Cook
,
W. H.
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
, Vol. 
21
, No. 
1
,
1985
, pp. 
31
48
, https://doi.org/10.1016/0013-7944(85)90052-9
20.
Yu
,
H.
,
Tieu
,
K.
,
Lu
,
C.
,
Lou
,
Y.
,
Liu
,
X.
,
Godbole
,
A.
, and
Kong
,
C.
, “
Tensile Fracture of Ultrafine Grained Aluminum 6061 Sheets by Asymmetric Cryorolling for Microforming
,”
Int. J. Damage Mech.
, Vol. 
23
, No. 
8
,
2014
, pp. 
1077
1095
, https://doi.org/10.1177/1056789514538083
21.
Cockcroft
,
M. G.
and
Latham
,
D. J.
, “
Ductility and the Workability of Metals
,”
J. Inst. Met.
, Vol. 
96
,
1968
, pp. 
33
39
.
22.
Eisenmenger
,
M.
,
Bhatt
,
K. K.
, and
Shi
,
M. F.
, “
Influence of Laser Welding Parameters on Formability and Robustness of Blank Manufacturing: An Application to a Body Side Frame
,”
SAE Trans.
, Vol. 
104
, No. 
5
,
1995
, pp. 
877
888
.
23.
Korouyeh
,
R. S.
,
Naeini
,
H. M.
,
Liaghat
,
G. H.
, and
Kasaei
,
M. M.
, “
Investigation of Weld Line Movement in Tailor Welded Blank Forming
,”
Adv. Mater. Res.
, Vol. 
445
,
2012
, pp. 
39
44
, https://doi.org/10.4028/www.scientific.net/AMR.445.39
24.
Ahmetoglu
,
M. A.
,
Brouwers
,
D.
,
Shulkin
,
L.
,
Taupin
,
L.
,
Kinzel
,
G. L.
, and
Altan
,
T.
, “
Deep Drawing of Round Cups from Tailor-Welded Blanks
,”
J. Mater. Process. Technol.
, Vol. 
53
, Nos. 
3–4
,
1995
, pp. 
684
694
, https://doi.org/10.1016/0924-0136(94)01767-U
25.
Safdarian
,
R.
,
Jorge
,
R. M. N.
,
Santos
,
A. D.
,
Naeini
,
H. M.
, and
Parente
,
M. P. L.
, “
A Comparative Study of Forming Limit Diagram Prediction of Tailor Welded Blanks
,”
Int. J. Mater. Form.
, Vol. 
8
, No,
2
,
2015
, pp. 
293
304
, https://doi.org/10.1007/s12289-014-1168-9
26.
Safdarian
,
R.
, “
Forming Limit Diagram Prediction of Tailor Welded Blank by Modified M–K Model
,”
Mech. Res. Commun.
, Vol. 
67
,
2015
, pp. 
47
57
, https://doi.org/10.1016/j.mechrescom.2015.05.004
27.
Safdarian
,
R.
, “
The Effects of Strength Ratio on the Forming Limit Diagram of Tailor-Welded Blanks
,”
Ironmaking Steelmaking
, Vol. 
45
, No. 
1
,
2016
, pp. 
17
24
, https://doi.org/10.1080/03019233.2016.1235371
28.
American Society for Testing Materials “
Volume 03.01 Metals–Mechanical Testing: Elevatd and Low-Temperature Tests; Metallography
,”
Annual Book of ASTM Standards
,
American Society for Testing Materials
,
West Conshohocken, PA
,
1999
, pp. 
78
98
,
501
508
.
29.
Nakazima
,
K.
,
Kikuma
,
T.
, and
Hasuka
,
K.
,
Study on the Formability of Steel Sheets, Yamata Technical Report, No. 264
,
1968
, pp. 
8517
8530
.
30.
Tvergaard
,
V.
, “
On Localization in Ductile Materials Containing Spherical Voids
,”
Int. J. Fract.
, Vol. 
18
, No. 
4
,
1982
, pp. 
237
252
, https://doi.org/10.1007/BF00015686
31.
Tvergaard
,
V.
and
Needleman
,
A.
, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
, Vol. 
32
, No. 
1
,
1984
, pp. 
157
169
, https://doi.org/10.1016/0001-6160(84)90213-X
32.
Chu
,
C. C.
and
Needleman
,
A.
, “
Void Nucleation Effects in Biaxially Stretched Sheets
,”
J. Eng. Mater. Technol.
, Vol. 
102
, No. 
3
,
1980
, pp. 
249
256
, https://doi.org/10.1115/1.3224807
33.
Safdarian
,
R.
, “
Stress Based Forming Limit Diagram for Formability Characterization of 6061 Aluminum
,”
Trans. Nonferrous Met. Soc. China
, Vol. 
26
, No. 
9
,
2016
, pp. 
2433
2441
, https://doi.org/10.1016/S1003-6326(16)64350-9
34.
Tuninetti
,
V.
,
Yuan
,
S.
,
Gilles
,
G.
,
Guzmán
,
C. F.
,
Habraken
,
A. M.
, and
Duchêne
,
L.
, “
Modeling the Ductile Fracture and the Plastic Anisotropy of DC01 Steel at Room Temperature and Low Strain Rates
,”
J. Phys. Conf. Ser
., Vol. 
734
, Part B,
2016
, 032075, https://doi.org/10.1088/1742-6596/734/3/032075
35.
Abbassi
,
F.
,
Pantalé
,
O.
,
Mistou
,
S.
,
Zghal
,
A.
, and
Rakotomalala
,
R.
, “
Effect of Ductile Damage Evolution in Sheet Metal Forming: Experimental and Numerical Investigations
,”
Key Eng. Mater.
, Vol. 
446
,
2010
, pp. 
157
169
, https://doi.org/10.4028/www.scientific.net/KEM.446.157
This content is only available via PDF.
You do not currently have access to this content.