Abstract

Fire remains one of the most pervasive threats to public safety and social development in real life. Fire water monitors have been used as tools for ending the fire all the time. The impact point accuracy of the water jet and the accurate prediction of the water jet trajectory have a significant effect on the efficiency of fire extinction. The quadratic drag model is selected on the basis of the analysis of the mechanical model of fluidic control volume considering the change of the cross-sectional area caused by the velocity and breakup of the water jet. The change of diameter and area of the droplet are also discussed, based on the theory of liquid jet breakup, to build a dynamic breakup model of air resistance and broken jet. The water jet simulations are performed on two different scales by researching several main performance parameters, such as discharge angle and initial velocity, which can affect the jet trajectory of fire water monitor. The influences of various parameters on the jet trajectory are summarized through the simulations of two kinds of water jet experimental data, and an accurate prediction of the jet trajectory of fire water monitor is realized.

References

1.
Darbra
,
R. M.
,
Palacios
,
A.
, and
Casal
,
J.
, “
Domino Effect in Chemical Accidents: Main Features and Accident Sequences
,”
J. Hazard. Mater.
, Vol. 
183
, Nos. 
1–3
,
2010
, pp. 
565
573
, https://doi.org/10.1016/j.jhazmat.2010.07.061
2.
Marshall
,
A. W.
and
Marzo
,
M. D.
, “
Modelling Aspects of Sprinkler Spray Dynamics in Fires
,”
Process Saf. Environ. Prot.
, Vol. 
82
, No. 
2
,
2004
, pp. 
97
104
, https://doi.org/10.1205/095758204322972744
3.
Trettel
,
B.
and
Ezekoye
,
O. A.
, “
Theoretical Range and Trajectory of a Water Jet
,” presented at the
ASME 2015 International Mechanical Engineering Congress and Exposition
, Houston, TX, Nov. 13–19,
2015
,
Fluids Engineering Systems and Technologies
,
New York, NY
, pp. 
1
9
, https://doi.org/10.1115/IMECE2015-52103
4.
Theobald
,
C.
, “
The Effect of Nozzle Design on the Stability and Performance of Turbulent Water Jets
,”
Fire Saf. J.
, Vol. 
4
, No. 
1
,
1981
, pp. 
1
13
, https://doi.org/10.1016/0379-7112(81)90002-3
5.
Ozcelik
,
Y.
,
Ciccu
,
R.
, and
Bortolussi
,
A.
, “
Effect of Working Parameters on Excavation Rate and Specific Energy on Surface Treatment with Pure Water Jet
,”
J. Test. Eval.
, Vol. 
41
, No. 
1
,
2013
, pp. 
104
115
, https://doi.org/10.1520/JTE104617
6.
Yinshui
,
L.
,
Zhuo
,
J.
,
Dan
,
W.
, and
Xiaohui
,
L.
, “
Experimental Research on the Water Mist Fire Suppression Performance in an Enclosed Space by Changing the Characteristics of Nozzles
,”
Exp. Therm. Fluid Sci.
, Vol. 
52
,
2014
, pp. 
174
181
, https://doi.org/10.1016/j.expthermflusci.2013.09.008
7.
Hatton
,
A. P.
and
Osborne
,
M. J.
, “
The Trajectories of Large Fire Fighting Jets
,”
Int. J. Heat Fluid Flow
, Vol. 
1
, No. 
1
,
1979
, pp. 
37
41
, https://doi.org/10.1016/0142-727X(79)90023-7
8.
Hatton
,
A. P.
,
Leech
,
C. M.
, and
Osborne
,
M. J.
, “
Computer Simulation of the Trajectories of Large Water Jets
,”
Int. J. Heat Fluid Flow
, Vol. 
6
, No. 
2
,
1985
, pp. 
137
141
, https://doi.org/10.1016/0142-727X(85)90051-7
9.
Min
,
Y.
,
Xiaoyang
,
C.
,
Chi
,
C.
, and
Chuanping
,
H.
, “
Pitching Angle-Based Theoretical Model for the Track Simulation of Water Jet out from Water Fire Monitors (in Chinese)
,”
J. Mech. Eng.
, Vol. 
47
,
2011
, pp. 
134
138
, https://doi.org/10.3901/JME.2011.11.134
10.
Novozhilov
,
V.
, “
Computational Fluid Dynamics Modeling of Compartment Fires
,”
Prog. Energy Combust. Sci.
, Vol. 
27
, No. 
6
,
2001
, pp. 
611
666
, https://doi.org/10.1016/S0360-1285(01)00005-3
11.
Link
,
E.
,
Myers
,
T.
,
Trouvé
,
A.
, and
Marshall
,
A.
, “
Measurements of Spray-Plume Interactions for Model Validation
,”
Fire Saf. J.
, Vol. 
91
,
2017
, pp. 
714
722
, https://doi.org/10.1016/j.firesaf.2017.04.024
12.
Wahl
,
T. L.
,
Frizell
,
K. H.
, and
Cohen
,
E. A.
, “
Computing the Trajectory of Free Jets
,”
J. Hydraul. Eng.
, Vol. 
134
, No. 
2
,
2008
, pp. 
256
260
, https://doi.org/10.1061/(ASCE)0733-9429(2008)134:2(256)
13.
McCarthy
,
M. J.
and
Molloy
,
N. A.
, “
Review of Stability of Liquid Jets and the Influence of Nozzle Design
,”
Chem. Eng. J.
, Vol. 
7
, No. 
1
,
1974
, pp. 
1
20
, https://doi.org/10.1016/0300-9467(74)80021-3
14.
Ervine
,
D. A.
and
Falvey
,
H. T.
, “
Behaviour of Turbulent Water Jets in the Atmosphere and in Plunge Pools
,”
Proc. Inst. Civ. Eng
, Vol. 
83
, No. 
1
,
1987
, pp. 
295
314
, https://doi.org/10.1680/iicep.1987.353
15.
Farvardin
,
E.
and
Dolatabadi
,
A.
, “
Numerical Simulation of Breakup of Elliptical Liquid Jet in Still Air
,” presented at the
ASME 2012 Fluids Engineering Division Summer Meeting
, Rio Grande, Puerto Rico, USA, July 8–12,
2012
,
Fluids Engineering Division
,
New York, NY
, pp. 
663
667
, https://doi.org/10.1115/FEDSM2012-72307
16.
Miyashita
,
T.
,
Sugawa
,
O.
,
Imamura
,
T.
,
Kamiya
,
K.
, and
Kawaguchi
,
Y.
, “
Modeling and Analysis of Water Discharge Trajectory with Large Capacity Monitor
,”
Fire Saf. J.
, Vol. 
63
,
2014
, pp. 
1
8
, https://doi.org/10.1016/j.firesaf.2013.09.028
17.
Lorenzini
,
G.
, “
Simplified Modelling of Sprinkler Droplet Dynamics
,”
Biosys. Eng.
, Vol. 
87
, No. 
1
,
2004
, pp. 
1
11
, https://doi.org/10.1016/j.biosystemseng.2003.08.015
18.
Xu
,
H.
,
Gong
,
S. H.
,
Liu
,
X. A.
, and
Qi
,
Y.
, “
Simulation and Experimental Study on the Droplet Simulated Motion of Double-Nozzle Impact Sprinkler (in Chinese)
,”
J. Hydraul. Eng
, Vol. 
43
,
2012
, pp. 
480
486
.
19.
Murzabaeb
,
M. T.
and
Yarin
,
A. L.
, “
Dynamics of Sprinkler Jets
,”
Fluid Dynam+
, Vol. 
20
, No. 
5
,
1985
, pp. 
715
722
, https://doi.org/10.1007/bf01050084
20.
Chanson
,
H.
, “
Turbulent Air–Water Flows in Hydraulic Structures: Dynamic Similarity and Scale Effects
,”
Environ. Fluid Mech.
, Vol. 
9
, No. 
2
,
2009
, pp. 
125
142
, https://doi.org/10.1007/s10652-008-9078-3
21.
Reitz
,
R. D.
, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomisation and Spray Technology
, Vol. 
3
,
1987
, pp. 
309
337
.
22.
Patterson
,
M. A.
and
Reitz
,
R. D.
, “
Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emission
,”
SAE Technical Paper
, Vol. 
1
,
1998
, 980131, https://doi.org/10.4271/980131
23.
Munroe
,
J. R.
and
Sutherland
,
B. R.
, “
Generation of Internal Waves by Sheared Turbulence: Experiments
,”
Environ Fluid Mech
, Vol. 
8
, Nos. 
5–6
,
2008
, pp. 
527
534
, https://doi.org/10.1007/s10652-008-9094-3
24.
Sun
,
J.
, “
Research of the Trajectory of Fire-Fighting Monitor’s Jet (in Chinese)
,” Ph.D. dissertation, Shanghai Jiao Tong University, Shanghai,
2008
.
25.
Suñol
,
F.
and
González-Cinca
,
R.
, “
Liquid Jet Breakup and Subsequent Droplet Dynamics under Normal Gravity and in Microgravity Conditions
,”
Phys. Fluids
, Vol. 
27
,
2015
, 077102, https://doi.org/10.1063/1.4927365
26.
Shinjo
,
J.
and
Umemura
,
A.
, “
Simulation of Liquid Jet Primary Breakup: Dynamics of Ligament and Droplet Formation
,”
Int. J. Multiphase Flow
, Vol. 
36
, No. 
7
,
2010
, pp. 
513
532
, https://doi.org/10.1016/j.ijmultiphaseflow.2010.03.008
27.
Lefebvre
,
A. H.
and
McDonell
,
V. G.
, “
Atomization and Sprays
,”
CRC Press
,
Boca Raton, FL
,
2017
, 284p.
28.
O’Rourke
,
P.
and
Bracco
,
F. V.
, “
Modelling of Drop Interactions in Thick Sprays and a Comparison with Experiments
,”
Proc.. Inst. Mech. Eng. C
, Vol. 
404
,
1980
, pp. 
101
116
.
29.
Ruff
,
G. A.
,
Bernal
,
L. P.
, and
Faeth
,
G. M.
, “
Structure of the Near-Injector Region of Nonevaporating Pressure-Atomized Sprays
,”
J. Propul. Power
, Vol. 
7
, No. 
2
,
1991
, pp. 
221
230
, https://doi.org/10.2514/3.23315
30.
Wu
,
P. K.
and
Faeth
,
G. M.
, “
Onset and End of Drop Formation along the Surface of Turbulent Liquid Jets in Still Gases
,”
Phys. Fluids
, Vol. 
7
, No. 
11
,
1995
, pp. 
2915
2917
, https://doi.org/10.1063/1.868667
31.
Wu
,
P. K.
,
Tseng
,
L. K.
, and
Faeth
,
G.
, “
Primary Breakup in Gas/Liquid Mixing Layers for Turbulent Liquids
,” presented at the
30th Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 6–9,
1992
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
, pp. 
295
317
.
32.
Magnotti
,
G. M.
,
Matusik
,
K. E.
,
Duke
,
D. J.
,
Knox
,
B. W.
,
Martinez
,
G. L.
,
Powell
,
C. F.
,
Kastengren
,
A. L.
, and
Genzale
,
C. L.
, “
Modeling the Influence of Nozzle-Generated Turbulence on Diesel Sprays
,” presented at the
29th Annual Conference of the Institute for Liquid Atomization and Spraying Systems (ILASS)-Americas Conference
, Atlanta, GA, May 18,
2017
,
Georgia Institute of Technology
,
Atlanta, GA
.
33.
Hinze
,
J.
,
Turbulence
, 2nd ed.,
McGraw-Hill
,
New York, NY
,
1975
, 790p.
This content is only available via PDF.
You do not currently have access to this content.