Abstract

Impulse excitation technique is a simple, convenient, and standard nondestructive method to detect mechanical parameters (dynamic Young’s modulus and dynamic torsional modulus) that only utilizes the first-order flexural resonant frequency, first-order torsional resonant frequency, and dimensions of structures. However, the mechanical parameter detection formulas are well established only for standard uniform specimens with uniform rectangular and circular cross sections. This study suggests a simulation-based method to detect mechanical parameters. A response surface method (RSM) is introduced to design numerical simulation experiments to build up experimental formulas to detect mechanical parameters. Numerical simulations are performed by the finite element method (FEM) to obtain enough simulation data for RSM analysis. After calculations, the two relationships (experimental formulas) can finally be obtained, i.e., the relationship of the dynamic Young’s modulus and first-order flexural resonant frequency with respect to dimensions of structures and the relationship of the dynamic torsional modulus and first-order torsional resonant frequency associated with dimensions of structures. Numerical simulations and experimental investigations show that the simulation-based method can be used to detect mechanical parameters in I-beams and hollow cylinders. More generally, this method can be further developed to detect the mechanical parameters of more complex structures than standard uniform specimens using a combination of FEM simulation and RSM.

References

1.
Khelifa
,
M.-R.
and
Guessasma
,
S.
, “
New Computational Model Based on Finite Element Method to Quantify Damage Evolution Due to External Sulfate Attack on Self-Compacting Concretes
,”
Comput.-Aided Civ. Infrastruct. Eng.
, Vol. 
28
, No. 
4
,
2013
, pp. 
260
272
, https://doi.org/10.1111/j.1467-8667.2012.00793.x
2.
Lozano-Galant
,
J. A.
,
Nogal
,
M.
,
Castillo
,
E.
, and
Turmo
,
J.
, “
Application of Observability Techniques to Structural System Identification
,”
Comput.-Aided Civ. Infrastruct. Eng.
, Vol. 
28
, No. 
6
,
2013
, pp. 
434
450
, https://doi.org/10.1111/mice.12004
3.
Yoshihara
,
H.
and
Tsunematsu
,
S.
, “
Feasibility of Estimation Methods for Measuring Young’s Modulus of Wood by Three-Point Bending Test
,”
Mater. Struct.
, Vol. 
39
, No. 
1
,
2007
, pp. 
29
36
, https://doi.org/10.1617/s11527-005-9015-6
4.
Zeng
,
X.
,
Wen
,
S.
,
Li
,
M.
, and
Xie
,
G.
, “
Estimating Young’s Modulus of Materials by a New Three-Point Bending Method
,”
Adv. Mater. Sci. Eng.
, Vol. 
2014
,
2014
, 189423, https://doi.org/10.1155/2014/189423
5.
He
,
J.
,
Chiang
,
M. Y. M.
, and
Hunston
,
D. L.
, “
Assessment of Sandwich Beam in Three-Point Bending for Measuring Adhesive Shear Modulus
,”
J. Eng. Mater. Technol.
, Vol. 
123
, No. 
3
,
2001
, pp. 
322
328
, https://doi.org/10.1115/1.1375159
6.
Yeheskel
,
O.
, “
Nondestructive Evaluation of the Dynamic Elastic Moduli of Porous Iron Compacts
,”
J. Test. Eval.
, Vol. 
32
, No. 
1
,
2004
, pp. 
17
23
, https://doi.org/10.1520/jte11269
7.
Alfano
,
M.
and
Pagnotta
,
L.
, “
A Non-Destructive Technique for the Elastic Characterization of Thin Isotropic Plates
,”
NDT and E Int.
, Vol. 
40
, No. 
2
,
2007
, pp. 
112
120
, https://doi.org/10.1016/j.ndteint.2006.10.002
8.
Li
,
Z.
and
Adeli
,
H.
, “
New Discrete-Time Robust H2/H Algorithm for Vibration Control of Smart Structures Using Linear Matrix Inequalities
,”
Eng. Appl. Artif. Intell.
, Vol. 
55
,
2016
, pp. 
47
57
, https://doi.org/10.1016/j.engappai.2016.05.008
9.
Topal
,
E.
,
Devrim Sam Parmak
,
E.
,
Uzunsoy
,
D.
, and
Colak Cakir
,
O.
, “
Investigation of Mechanical Properties of Graphene and Reduced Graphene Oxide Reinforced Epoxy Matrix Composites
,”
J. Test. Eval.
, Vol. 
45
, No. 
4
,
2017
, pp. 
1182
1191
, https://doi.org/10.1520/jte20160124
10.
Saadati
,
M.
,
Forquin
,
P.
,
Weddfelt
,
K.
,
Larsson
,
P.
, and
Hild
,
F.
, “
On the Mechanical Behavior of Granite Material with Particular Emphasis on the Influence from Pre-Existing Cracks and Defects
,”
J. Test. Eval.
, Vol. 
46
, No. 
1
,
2018
, pp. 
33
45
, https://doi.org/10.1520/jte20160072
11.
Xiang
,
J.
and
Zhong
,
Y.
, “
A Novel Personalized Diagnosis Methodology Using Numerical Simulation and an Intelligent Method to Detect Faults in a Shaft
,”
Appl. Sci.
, Vol. 
6
, No. 
12
,
2016
, 414, https://doi.org/10.3390/app6120414
12.
Barbieri
,
N.
,
Barbieri
,
R.
, and
Winikes
,
L. C.
, “
Parameters Estimation of Sandwich Beam Model with Rigid Polyurethane Foam Core
,”
Mech. Syst. Sig. Process.
, Vol. 
24
, No. 
2
,
2010
, pp. 
406
415
, https://doi.org/10.1016/j.ymssp.2009.08.005
13.
Silva
,
A.
,
Soares
,
A.
,
Flores-Colen
,
I.
, and
de Brito
,
J.
, “
Mechanical Characteristics of Lightweight Mortars on Small-Scale Samples
,”
J. Test. Eval.
, Vol. 
44
, No. 
1
,
2016
, pp. 
402
413
, https://doi.org/10.1520/jte20140535
14.
Chimenti
,
D. E.
, “
Review of Air-Coupled Ultrasonic Materials Characterization
,”
Ultrasonics
, Vol. 
54
, No. 
7
,
2014
, pp. 
1804
1816
, https://doi.org/10.1016/j.ultras.2014.02.006
15.
Xiang
,
J.
and
Liang
,
M.
, “
Wavelet-Based Detection of Beam Cracks Using Modal Shape and Frequency Measurements
,”
Comput.-Aided Civ. Infrastruct. Eng.
, Vol. 
27
, No. 
6
,
2012
, pp. 
439
454
, https://doi.org/10.1111/j.1467-8667.2012.00760.x
16.
Zhong
,
Y.
and
Xiang
,
J.
, “
A Two-Dimensional Plum-Blossom Sensor Array-Based Multiple Signal Classification Method for Impact Localization in Composite Structures
,”
Comput.-Aided Civ. Infrastruct. Eng.
, Vol. 
31
, No. 
8
,
2016
, pp. 
633
643
, https://doi.org/10.1111/mice.12198
17.
Li
,
X.
,
Zhang
,
Z.
,
Qin
,
L.
,
Yang
,
X.
,
Feng
,
Z.
,
Wang
,
Y.
,
Miao
,
H.
,
He
,
L.
, and
Gong
,
X.
, “
Measuring Mechanical Properties of the 3D Carbon/Carbon Composite Using Automated Grid Method
,”
J. Test. Eval.
, Vol. 
41
, No. 
1
,
2013
, pp. 
81
89
, https://doi.org/10.1520/jte20120006
18.
Pérez
,
L.
,
Lascano
,
S.
,
Aguilar
,
C.
,
Domancic
,
D.
, and
Alfonso
,
I.
, “
Simplified Fractal FEA Model for the Estimation of the Young’s Modulus of Ti Foams Obtained by Powder Metallurgy
,”
Mater. Des.
, Vol. 
83
,
2015
, pp. 
276
283
, https://doi.org/10.1016/j.matdes.2015.06.038
19.
Panich
,
S.
,
Uthaisangsuk
,
V.
,
Suranuntchai
,
S.
, and
Jirathearanat
,
S.
, “
Investigation of Anisotropic Plastic Deformation of Advanced High Strength Steel
,”
Mater. Sci. Eng., A
, Vol. 
592
,
2014
, pp. 
207
220
, https://doi.org/10.1016/j.msea.2013.11.010
20.
Mackerle
,
J.
, “
Finite Element Analyses and Simulations of Manufacturing Processes of Composites and Their Mechanical Properties: A Bibliography (1985-2003)
,”
Comput. Mater. Sci.
, Vol. 
31
, Nos. 
3–4
,
2004
, pp. 
187
219
, https://doi.org/10.1016/j.commatsci.2004.03.001
21.
Kamiya
,
R.
,
Cheeseman
,
B. A.
,
Popper
,
P.
, and
Chou
,
T.-W.
, “
Some Recent Advances in the Fabrication and Design of Three-Dimensional Textile Preforms: A Review
,”
Compos. Sci. Technol.
, Vol. 
60
, No. 
1
,
2000
, pp. 
33
47
, https://doi.org/10.1016/s0266-3538(99)00093-7
22.
Mahmoudi
,
A. H.
,
Nourbakhsh
,
S. H.
, and
Amali
,
R.
, “
An Alternative Approach to Determine Material Characteristics Using Spherical Indentation and Neural Networks for Bulk Metals
,”
J. Test. Eval.
, Vol. 
40
, No. 
2
,
2012
, pp. 
211
219
, https://doi.org/10.1520/jte103897
23.
Zhang
,
X.
,
Gao
,
R. X.
,
Yan
,
R.
,
Chen
,
X.
,
Sun
,
C.
, and
Yang
,
Z.
, “
Multivariable Wavelet Finite Element-Based Vibration Model for Quantitative Crack Identification by Using Particle Swarm Optimization
,”
J. Sound Vib.
, Vol. 
375
,
2016
, pp. 
200
216
, https://doi.org/10.1016/j.jsv.2016.04.018
24.
Zhang
,
X.
,
Zuo
,
H.
,
Liu
,
J.
,
Chen
,
X.
, and
Yang
,
Z.
, “
Analysis of Shallow Hyperbolic Shell by Different Kinds of Wavelet Elements Based on B-Spline Wavelet on the Interval
,”
Appl. Math. Modell.
, Vol. 
40
, No. 
3
,
2016
, pp. 
1914
1928
, https://doi.org/10.1016/j.apm.2015.09.036
25.
Yang
,
Z.
,
Chen
,
X.
,
Li
,
X.
,
Jiang
,
Y.
,
Miao
,
H.
, and
He
,
Z.
, “
Wave Motion Analysis in Arch Structures via Wavelet Finite Element Method
,”
J. Sound Vib.
, Vol. 
333
, No. 
2
,
2014
, pp. 
446
469
, https://doi.org/10.1016/j.jsv.2013.09.011
26.
Kolluru
,
S.
,
Popovics
,
J.
, and
Shah
,
S.
, “
Determining Elastic Properties of Concrete Using Vibrational Resonance Frequencies of Standard Test Cylinders
,”
Cem. Concr. Aggregates
, Vol. 
22
, No. 
2
,
2000
, pp. 
81
89
, https://doi.org/10.1520/cca10467j
27.
Wang
,
H.
,
Li
,
K.
,
Chen
,
P.
, and
Wang
,
S.
, “
Recent Research Development on Condition Diagnosis of Rotating Machinery Part A: Diagnosis Method Based on Feature Extraction
,”
Information
, Vol. 
13
, No. 
1
,
2010
, pp. 
111
122
.
28.
Wang
,
H.
,
Li
,
K.
,
Chen
,
P.
, and
Shuming
,
W.
, “
Recent Research Development on Condition Diagnosis of Rotating Machinery Part B: Diagnosis Method Based on Artificial Intelligence
,”
Information
, Vol. 
13
, No. 
4
,
2010
, pp. 
1271
1282
.
29.
Tefft
,
W. E.
and
Spinner
,
S.
, “
Torsional Resonance Vibrations of Uniform Bars of Square Cross Section
,”
J. Res. Nat. Bur. Stand.
, Vol. 
65A
, No. 
3
,
1961
, pp. 
167
171
, https://doi.org/10.6028/jres.065a.020
30.
ASTM E1875 Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Sonic Resonance, ASTM International, West Conshohocken, PA,
2000
, www.astm.org
31.
Swarnakar
,
A. K.
,
Donzel
,
L.
,
Vleugels
,
J.
, and
Van der Biest
,
O.
, “
High Temperature Properties of ZnO Ceramics Studied by the Impulse Excitation Technique
,”
J. Eur. Ceram. Soc.
, Vol. 
29
, No. 
14
,
2009
, pp. 
2991
2998
, https://doi.org/10.1016/j.jeurceramsoc.2009.04.039
32.
Lugovy
,
M.
,
Slyunyayev
,
V.
,
Orlovskaya
,
N.
,
Mitrentsis
,
E.
,
Aneziris
,
C. G.
,
Graule
,
T.
, and
Kuebler
,
J.
, “
Temperature Dependence of Elastic Properties of ZrB2–SiC Composites
,”
Ceram. Int.
, Vol. 
42
, No. 
2
, Part A,
2016
, pp. 
2439
2445
, https://doi.org/10.1016/j.ceramint.2015.10.044
33.
Tognana
,
S.
,
Salgueiro
,
W.
,
Somoza
,
A.
, and
Marzocca
,
A.
, “
Measurement of the Young’s Modulus in Particulate Epoxy Composites Using the Impulse Excitation Technique
,”
Mater. Sci. Eng., A
, Vol. 
527
, Nos. 
18–19
,
2010
, pp. 
4619
4623
, https://doi.org/10.1016/j.msea.2010.04.083
34.
Sousa
,
F. J. P.
,
Dal Bó
,
M.
,
Guglielmi
,
P. O.
,
Janssen
,
R.
, and
Hotza
,
D.
, “
Characterization of Young’s Modulus and Fracture Toughness of Albite Glass by Different Techniques
,”
Ceram. Int.
, Vol. 
40
, No. 
7
, Part B,
2014
, pp. 
10893
10899
, https://doi.org/10.1016/j.ceramint.2014.03.085
35.
Roebben
,
G.
and
Van der Biest
,
O.
, “
Recent Advances in the Use of the Impulse Excitation Technique for the Characterisation of Stiffness and Damping of Ceramics, Ceramic Coatings and Ceramic Laminates at Elevated Temperature
,”
Key Eng. Mater.
, Vols. 
206–213
,
2001
, pp. 
621
624
, https://doi.org/10.4028/www.scientific.net/kem.206-213.621
36.
Chiu
,
C.-C.
and
Case
,
E. D.
, “
Elastic Modulus Determination of Coating Layers as Applied to Layered Ceramic Composites
,”
Mater. Sci. Eng., A
, Vol. 
132
,
1991
, pp. 
39
47
, https://doi.org/10.1016/0921-5093(91)90359-u
37.
Hauert
,
A.
,
Rossoll
,
A.
, and
Mortensen
,
A.
, “
Young’s Modulus of Ceramic Particle Reinforced Aluminium: Measurement by the Impulse Excitation Technique and Confrontation with Analytical Models
,”
Composites Part A
, Vol. 
40
, No. 
4
,
2009
, pp. 
524
529
, https://doi.org/10.1016/j.compositesa.2009.02.001
38.
Bahr
,
O.
,
Schaumann
,
P.
,
Bollen
,
B.
, and
Bracke
,
J.
, “
Young’s Modulus and Poisson’s Ratio of Concrete at High Temperatures: Experimental Investigations
,”
Mater. Des.
, Vol. 
45
,
2013
, pp. 
421
429
, https://doi.org/10.1016/j.matdes.2012.07.070
39.
Pabst
,
W.
,
Gregorová
,
E.
,
Kloužek
,
J.
,
Kloužková
,
A.
,
Zemenová
,
P.
,
Kohoutková
,
M.
,
Sedlářová
,
I.
,
Lang
,
K.
,
Kotouček
,
M.
,
Nevřivová
,
L.
, and
Všianský
,
D.
, “
High-Temperature Young’s Moduli and Dilatation Behavior of Silica Refractories
,”
J. Eur. Ceram. Soc.
, Vol. 
36
, No. 
1
,
2016
, pp. 
209
220
, https://doi.org/10.1016/j.jeurceramsoc.2015.09.020
40.
Latella
,
B. A.
and
Liu
,
T.
, “
High-Temperature Young’s Modulus of Alumina during Sintering
,”
J. Am. Ceram. Soc.
, Vol. 
88
, No. 
3
,
2005
, pp. 
773
776
, https://doi.org/10.1111/j.1551-2916.2005.00082.x
41.
Roebben
,
G.
,
Bollen
,
B.
,
Brebels
,
A.
,
Van Humbeeck
,
J.
, and
Van der Biest
,
O.
, “
Impulse Excitation Apparatus to Measure Resonant Frequencies, Elastic Moduli, and Internal Friction at Room and High Temperature
,”
Rev. Sci. Instrum.
, Vol. 
68
, No. 
12
,
1997
, pp. 
4511
4515
, https://doi.org/10.1063/1.1148422
42.
de Oliveira
,
A. P. N.
,
Vilches
,
E. S.
,
Soler
,
V. C.
, and
Villegas
,
F. A. G.
, “
Relationship between Young’s Modulus and Temperature in Porcelain Tiles
,”
J. Eur. Ceram. Soc.
, Vol. 
32
, No. 
11
,
2012
, pp. 
2853
2858
, https://doi.org/10.1016/j.jeurceramsoc.2011.09.019
43.
Dickson
,
R. W.
and
Schreiber
,
E.
, “
An Alumina Standard Reference Material for Resonance Frequency and Dynamic Elastic Moduli Measurement II. Characteristic Values for Use from 250 °C to 10000 °C
,”
J. Res. Nat. Bur. Stand.
, Vol. 
77A
, No. 
4
,
1973
, pp. 
391
394
, https://doi.org/10.6028/jres.077a.027
44.
Dickson
,
R. W.
and
Wachtman
,
J. B.
, Jr.
, “
An Alumina Standard Reference Material for Resonance Frequency and Dynamic Elastic Moduli Measurement I. For Use at 25 °C
,”
J. Res. Nat. Bur. Stand.
, Vol. 
75A
, No. 
3
,
1971
, pp. 
155
162
, https://doi.org/10.6028/jres.075a.016
45.
Cornell
,
J. A.
,
Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data
, 3rd ed.,
John Wiley and Sons
,
New York, NY
,
2002
, 649p.
46.
Moaveni
,
S.
,
Finite Element Analysis Theory and Application with ANSYS
, 4th ed.,
2014
,
Pearson
,
Upper Saddle River, NJ
, 936p.
47.
Design-Expert “Design-Expert 8 User’s Guide,” Design-Expert, 2018, http://web.archive.org/web/20181103114032/https://en.freedownloadmanager.org/Windows-PC/Design-Expert.html
This content is only available via PDF.
You do not currently have access to this content.