Abstract

The compressive strength of slag-blended cement paste under steam curing was evaluated using a nondestructive electrochemical impedance spectroscopy (EIS) method. In the slag-blended cement paste, four slag replacement ratios (0 %, 20 %, 50 %, and 70 %) and two curing conditions (standard curing and steam curing) were employed. The topological structure of the EIS was analyzed, inclusive of the Nyquist diagram and the Bode diagram. In the analysis of the Bode diagram, a parameter called the diffusion impedance had an inverse ratio to the porosity of paste. Results showed that the diffusion impedance reduced with increasing the slag replacement ratio at 3 days, while the influence of the slag content on the diffusion impedance was negligible at 28 days. The diffusion impedance of slag-blended cement paste under standard curing was lower than that under steam curing at 3 days, while the difference at 28 days was not evident. In addition, an exponential model between the compressive strength and the diffusion impedance was proposed. A relatively weak relationship of the model was found in the paste containing 70 % slag, with 0.87 regression coefficient. Nevertheless, a strong correlation was found in the cement paste when the slag replacement was no more than 50 %, where the regression coefficient was above 0.95.

References

1.
Jiang
,
S.
,
Zhou
,
D.-C.
,
Zhang
,
L.-Q.
,
Ouyang
,
J.
,
Yu
,
X.
,
Cui
,
X.
, and
Han
,
B.-G.
, “
Comparison of Compressive Strength and Electrical Resistivity of Cementitious Composites with Different Nano- and Micro-Fillers
,”
Arch. Civ. Mech. Eng.
, Vol. 
18
, No. 
1
,
2018
, pp. 
60
68
, https://doi.org/10.1016/j.acme.2017.05.010
2.
Juenger
,
M. C. G.
,
Winnefeld
,
F.
,
Provis
,
J. L.
, and
Ideker
,
J. H.
, “
Advances in Alternative Cementitious Binders
,”
Cem. Concr. Res.
, Vol. 
41
, No. 
12
,
2011
, pp. 
1232
1243
, https://doi.org/10.1016/j.cemconres.2010.11.012
3.
Shannon
,
J.
,
Howard
,
I. L.
, and
Cost
,
V. T.
, “
Potential of Portland-Limestone Cement to Improve Performance of Concrete Made with High Slag Cement and Fly Ash Replacement Rates
,”
J. Test. Eval.
, Vol. 
45
, No. 
3
,
2017
, pp. 
873
889
, https://doi.org/10.1520/JTE20150306
4.
Sioulas
,
B.
and
Sanjayan
,
J. G.
, “
Hydration Temperatures in Large High-Strength Concrete Columns Incorporating Slag
,”
Cem. Concr. Res.
, Vol. 
30
, No. 
11
,
2000
, pp. 
1791
1799
, https://doi.org/10.1016/S0008-8846(00)00387-2
5.
Otieno
,
M.
,
Beushausen
,
H.
, and
Alexander
,
M.
, “
Effect of Chemical Composition of Slag on Chloride Penetration Resistance of Concrete
,”
Cem. Concr. Compos.
, Vol. 
46
,
2014
, pp. 
56
64
, https://doi.org/10.1016/j.cemconcomp.2013.11.003
6.
Yu
,
C.
,
Sun
,
W.
, and
Scrivener
,
K.
, “
Degradation Mechanism of Slag Blended Mortars Immersed in Sodium Sulfate Solution
,”
Cem. Concr. Res.
, Vol. 
72
,
2015
, pp. 
37
47
, https://doi.org/10.1016/j.cemconres.2015.02.015
7.
Liu
,
B.-J.
,
Xie
,
Y.-J.
, and
Li
,
J.
, “
Influence of Steam Curing on the Compressive Strength of Concrete Containing Supplementary Cementing Materials
,”
Cem. Concr. Res.
, Vol. 
35
, No. 
5
,
2005
, pp. 
994
998
, https://doi.org/10.1016/j.cemconres.2004.05.044
8.
Lee
,
M.-J.
,
Lee
,
M.-G.
,
Wang
,
Y.-C.
,
Huang
,
Y.
, and
Wang
,
W.-C.
, “
Study of Steam and Microwave Curing of Concretes Containing Slag, Fly Ash, or Silica Fume
,”
J. Test. Eval.
, Vol. 
43
, No. 
2
,
2015
, pp. 
1
7
, https://doi.org/10.1520/JTE20140107
9.
Gaedicke
,
C.
,
Torres
,
A.
,
Huynh
,
K. C. T.
, and
Marines
,
A.
, “
A Method to Correlate Splitting Tensile Strength and Compressive Strength of Pervious Concrete Cylinders and Cores
,”
Constr. Build. Mater.
, Vol. 
125
,
2016
, pp. 
271
278
, https://doi.org/10.1016/j.conbuildmat.2016.08.031
10.
Cordeiro
,
G. C.
,
Paiva
,
O. A.
,
Toledo Filho
,
R. D.
,
Fairbairn
,
E. M. R.
, and
Tavares
,
L. M.
, “
Long-Term Compressive Behavior of Concretes with Sugarcane Bagasse Ash as a Supplementary Cementitious Material
,”
J. Test. Eval.
, Vol. 
46
, No. 
2
,
2018
, pp. 
564
573
, https://doi.org/10.1520/JTE20160316
11.
Kazemian
,
S.
and
Ghareh
,
S.
, “
Effects of Cement, Different Bentonite, and Aggregates on Plastic Concrete in Besh-Ghardash Dam, Iran
,”
J. Test. Eval.
, Vol. 
45
, No. 
1
,
2017
, pp. 
242
248
, https://doi.org/10.1520/JTE20160161
12.
Poon
,
C. S.
,
Wong
,
Y. L.
, and
Lam
,
L.
, “
The Influence of Different Curing Conditions on the Pore Structure and Related Properties of Fly-Ash Cement Pastes and Mortars
,”
Constr. Build. Mater.
, Vol. 
11
, Nos. 
7–8
,
1997
, pp. 
383
393
, https://doi.org/10.1016/S0950-0618(97)00061-5
13.
Lin
,
Y.
,
Kuo
,
S. F.
,
Hsiao
,
C.
, and
Lai
,
C. P.
, “
Investigation of Pulse Velocity-Strength Relationship of Hardened Concrete
,”
ACI Mater. J.
, Vol. 
104
, No. 
4
,
2007
, pp. 
344
350
, https://doi.org/10.14359/18823
14.
Bogas
,
J. A.
,
Gomes
,
M. G.
, and
Gomes
,
A.
, “
Compressive Strength Evaluation of Structural Lightweight Concrete by Non-destructive Ultrasonic Pulse Velocity Method
,”
Ultrasonics
, Vol. 
53
, No. 
5
,
2013
, pp. 
962
972
, https://doi.org/10.1016/j.ultras.2012.12.012
15.
Velay-Lizancos
,
M.
,
Perez-Ordoñez
,
J. L.
,
Martinez-Lage
,
I.
, and
Vazquez-Burgo
,
P.
, “
Analytical and Genetic Programming Model of Compressive Strength of Eco Concretes by NDT According to Curing Temperature
,”
Constr. Build. Mater.
, Vol. 
144
,
2017
, pp. 
195
206
, https://doi.org/10.1016/j.conbuildmat.2017.03.123
16.
Baran
,
T.
and
Pichniarczyk
,
P.
, “
Correlation Factor between Heat of Hydration and Compressive Strength of Common Cement
,”
Constr. Build. Mater.
, Vol. 
150
,
2017
, pp. 
321
332
, https://doi.org/10.1016/j.conbuildmat.2017.06.025
17.
Gu
,
P.
,
Xie
,
P.
,
Beaudoin
,
J. J.
, and
Brousseau
,
R.
, “
AC Impedance Spectroscopy (I): A New Equivalent Circuit Model for Hydrated Portland Cement Paste
,”
Cem. Concr. Res.
, Vol. 
22
, No. 
5
,
1992
, pp. 
833
840
, https://doi.org/10.1016/0008-8846(92)90107-7
18.
McCarter
,
W. J.
,
Garvin
,
S.
, and
Bouzid
,
N.
, “
Impedance Measurements on Cement Paste
,”
J. Mater. Sci. Lett.
, Vol. 
7
, No. 
10
,
1988
, pp. 
1056
1057
, https://doi.org/10.1007/BF00720825
19.
Song
,
G.
, “
Equivalent Circuit Model for AC Electrochemical Impedance Spectroscopy of Concrete
,”
Cem. Concr. Res.
, Vol. 
30
, No. 
11
,
2000
, pp. 
1723
1730
, https://doi.org/10.1016/S0008-8846(00)00400-2
20.
Dong
,
B.-Q.
,
Qiu
,
Q.-W.
,
Xiang
,
J.-Q.
,
Huang
,
C.-J.
,
Xing
,
F.
,
Han
,
N.-X.
, and
Lu
,
Y.-Y.
, “
Electrochemical Impedance Measurement and Modeling Analysis of the Carbonation Behavior for Cementititous Materials
,”
Constr. Build. Mater.
, Vol. 
54
,
2014
, pp. 
558
565
, https://doi.org/10.1016/j.conbuildmat.2013.12.100
21.
Xiong
,
C.-S.
,
Jiang
,
L.-H.
,
Zhang
,
Y.
,
Chu
,
H.-Q.
, and
Jiang
,
P.
, “
Characterization of Sulfate Diffusion into Cement Paste by Low Frequency Impedance Spectroscopy
,”
Mater. Lett.
, Vol. 
174
,
2016
, pp. 
234
237
, https://doi.org/10.1016/j.matlet.2016.03.131
22.
SL 352-2006
Test Code for Hydraulic Concrete
,
Ministry of Water Resources of the People’s Republic of China
,
Beijing, China
,
2006
, www.chinesestandard.net
23.
Güneyisi
,
E.
and
Gesoğlu
,
M.
, “
A Study on Durability Properties of High-Performance Concretes Incorporating High Replacement Levels of Slag
,”
Mater. Struct.
, Vol. 
41
, No. 
3
,
2008
, pp. 
479
493
, https://doi.org/10.1617/s11527-007-9260-y
24.
Castellano
,
C. C.
,
Bonavetti
,
V. L.
,
Donza
,
H. A.
, and
Irassar
,
E. F.
, “
The Effect of w/b and Temperature on the Hydration and Strength of Blastfurnace Slag Cements
,”
Constr. Build. Mater.
, Vol. 
111
,
2016
, pp. 
679
688
, https://doi.org/10.1016/j.conbuildmat.2015.11.001
25.
Aldea
,
C.-M.
,
Young
,
F.
,
Wang
,
K.
, and
Shah
,
S. P.
, “
Effects of Curing Conditions on Properties of Concrete Using Slag Replacement
,”
Cem. Concr. Res.
, Vol. 
30
, No. 
3
,
2000
, pp. 
465
472
, https://doi.org/10.1016/S0008-8846(00)00200-3
26.
Burciaga-Díaz
,
O.
,
Gómez-Zamorano
,
L. Y.
, and
Escalante-García
,
J. I.
, “
Influence of the Long Term Curing Temperature on the Hydration of Alkaline Binders of Blast Furnace Slag-Metakaolin
,”
Constr. Build. Mater.
, Vol. 
113
,
2016
, pp. 
917
926
, https://doi.org/10.1016/j.conbuildmat.2016.03.111
27.
Xie
,
P.
,
Gu
,
P.
,
Xu
,
Z.
, and
Beaudoin
,
J. J.
, “
A Rationalized a.c. Impedence Model for Microstructural Characterization of Hydrating Cement Systems
,”
Cem. Concr. Res.
, Vol. 
23
, No. 
2
,
1993
, pp. 
359
367
, https://doi.org/10.1016/0008-8846(93)90101-E
28.
Song
,
Z.-J.
,
Jiang
,
L.-H.
,
Li
,
W.
,
Xiong
,
C.-S.
, and
Chu
,
H.-Q.
, “
Impact of Compressive Fatigue on Chloride Diffusion Coefficient in OPC Concrete: An Analysis Using EIS Method
,”
Constr. Build. Mater.
, Vol. 
113
,
2016
, pp. 
712
720
, https://doi.org/10.1016/j.conbuildmat.2016.03.108
29.
Dong
,
B.-Q.
,
Qiu
,
Q.-W.
,
Gu
,
Z.-T.
,
Xiang
,
J.-Q.
,
Huang
,
C.-J.
,
Fang
,
Y.
,
Xing
,
F.
, and
Liu
,
W.
, “
Characterization of Carbonation Behavior of Fly Ash Blended Cement Materials by the Electrochemical Impedance Spectroscopy Method
,”
Cem. Concr. Compos.
, Vol. 
65
,
2016
, pp. 
118
127
, https://doi.org/10.1016/j.cemconcomp.2015.10.006
30.
Song
,
S.-Q.
,
Jiang
,
L.-H.
,
Jiang
,
S.-B.
,
Yan
,
X.-C.
, and
Xu
,
N.
, “
The Mechanical Properties and Electrochemical Behavior of Cement Paste Containing Nano-MgO at Different Curing Temperature
,”
Constr. Build. Mater.
, Vol. 
164
,
2018
, pp. 
663
671
, https://doi.org/10.1016/j.conbuildmat.2018.01.011
31.
Gu
,
P.
,
Xie
,
P.
, and
Beaudoin
,
J. J.
, “
Some Applications of AC Impedance Spectroscopy in Cement Research
,”
Cem. Concr. Aggregates
, Vol. 
17
, No. 
2
,
1995
, pp. 
113
118
, https://doi.org/10.1520/CCA10136J
32.
Özbay
,
E.
,
Erdemir
,
M.
, and
Durmuş
,
H.
İ., “
Utilization and Efficiency of Ground Granulated Blast Furnace Slag on Concrete Properties—A Review
,”
Constr. Build. Mater.
, Vol. 
105
,
2016
, pp. 
423
434
, https://doi.org/10.1016/j.conbuildmat.2015.12.153
33.
Reinhardt
,
H.-W.
and
Stegmaier
,
M.
, “
Influence of Heat Curing on the Pore Structure and Compressive Strength of Self-Compacting Concrete (SCC)
,”
Cem. Concr. Res.
, Vol. 
36
, No. 
5
,
2006
, pp. 
879
885
, https://doi.org/10.1016/j.cemconres.2005.12.004
34.
Ryshkewitch
,
E.
, “
Compression Strength of Porous Sintered Alumina and Zirconia
,”
J. Am. Ceram. Soc.
, Vol. 
36
, No. 
2
,
1953
, pp. 
65
68
, https://doi.org/10.1111/j.1151-2916.1953.tb12837.x
This content is only available via PDF.
You do not currently have access to this content.