Abstract

For many high-reliability and long-life products, the accuracies of some existing life prediction models are not high enough, which may limit their fast development. For this purpose, four groups of constant-stress accelerated degradation tests (ADTs) were carried out by increasing the temperature of a vacuum fluorescent display (VFD) cathodic filament, and the equivalent average luminance degradation model (EALDM) was proposed to predict VFD life. In this model, firstly, a two-parameter Weibull function was used to fit average test data at each accelerated stress, and the corresponding formula of luminance degradation was obtained. Secondly, a power function was determined to fit multi-groups of data points formed by an accelerated stress and time at different given luminance, and then the work time under normal stress was extrapolated. Finally, by reusing the Weibull function to fit the data points, including the work time and given luminance, the life prediction of products was achieved. The results indicate that the test design of constant-stress ADTs is correct and feasible; the Weibull function well reveals the VFD luminance decaying law at both accelerated and normal stresses, and the power function objectively reflects the relationship between work time and stress. It is found by comparing the predicted life with the reference value that EALDM has high precision, which paves the way for following research in life prediction methodology and acts as a guide for professional technicians.

References

1.
Zhang
,
B.-N.
and
Chen
,
D.-R.
, “
The Characters and Application of Module VFD GU384x32L-3900
,”
Microprocessors
, No. 
6
,
2006
, pp. 
15
17
.
2.
Berz
,
M.
, “
Differential Algebraic Description and Analysis of Trajectories in Vacuum Electronic Devices Including Space-Charge Effects
,”
IEEE Trans. Electron Devices
, Vol. 
35
, No. 
11
,
1988
, pp. 
2002
2009
, https://doi.org/10.1109/16.7419
3.
Jin
,
X. H.
,
Mu
,
P. C.
,
Zhang
,
Y.
, and
Wu
,
M. J.
, “
A New Method for Character Display Defect Detection of VFD Panel
,”
Comput. Appl. Software
, Vol. 
30
, No. 
3
,
2013
, pp. 
22
24
.
4.
Xiaohua
,
L.
,
Zhou
,
S.
, and
Xie
,
W.
, “
VFD Dot-Matrix Display Control Module GU160X32-800B and Its Application
,” presented at the
2010 Third International Symposium on Information Science and Engineering
, Shanghai, China, Dec. 24–26,
2010
,
Institute of Electrical and Electronics Engineers
,
Piscataway, NJ
, pp. 
451
453
.
5.
Yoshida
,
Y.
,
Ishizuka
,
A.
, and
Makishima
,
H.
, “
Present and Future of Vacuum Fluorescent Display and Field Emission Display
,”
Mater. Chem. Phys.
, Vol. 
40
, No. 
4
,
1995
, pp. 
267
272
, https://doi.org/10.1016/0254-0584(95)01492-6
6.
Wang
,
H.
,
Xu
,
T.
, and
Mi
,
Q.
, “
Lifetime Prediction Based on Gamma Processes from Accelerated Degradation Data
,”
Chin. J. Aeronaut.
, Vol. 
28
, No. 
1
,
2015
, pp. 
172
179
, https://doi.org/10.1016/j.cja.2014.12.015
7.
Liu
,
L.
,
Li
,
X.-Y.
,
Jiang
,
T.-M.
, and
Sun
,
F.-Q.
, “
Utilizing Accelerated Degradation and Field Data for Life Prediction of Highly Reliable Products
,”
Qual. Reliab. Eng. Int.
, Vol. 
32
, No. 
7
,
2016
, pp. 
2281
2297
, https://doi.org/10.1002/qre.1935
8.
Mehr
,
M. Y.
,
van Driel
,
W. D.
, and
Zhang
,
G. Q.
, “
Reliability and Lifetime Prediction of Remote Phosphor Plates in Solid-State Lighting Applications Using Accelerated Degradation Testing
,”
J. Electron. Mater.
, Vol. 
45
, No. 
1
,
2016
, pp. 
444
446
, https://doi.org/10.1007/s11664-015-4120-y
9.
George
,
M. G.
,
Liu
,
H.
,
Muirhead
,
D.
,
Banerjee
,
R.
,
Ge
,
N.
,
Shrestha
,
P.
,
Lee
,
J.
,
Chevalier
,
S.
,
Hinebaugh
,
J.
,
Messerschmidt
,
M.
,
Zeis
,
R.
,
Scholta
,
J.
, and
Bazylak
,
A.
, “
Accelerated Degradation of Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers: Mass Transport Resistance and Liquid Water Accumulation at Limiting Current Density with in Operando Synchrotron X-ray Radiography
,”
J. Electrochem. Soc.
, Vol. 
164
, No. 
7
,
2017
, pp. 
F714
F721
, https://doi.org/10.1149/2.0091707jes
10.
Cohen
,
G.
and
McLinn
,
J.
, “
Setting Up and Analyzing a Two Stress Accelerated Test
,” presented at the
Annual Reliability and Maintainability Symposium
(RAMS), Orlando, FL, Jan. 23–26,
2017
,
Institute of Electrical and Electronics Engineers
,
Piscataway, NJ
, pp. 
1
5
.
11.
Pellizzi
,
E.
,
Lattuati-Derieux
,
A.
,
Lavédrine
,
B.
, and
Cheradame
,
H.
, “
Degradation of Polyurethane Ester Foam Artifacts: Chemical Properties, Mechanical Properties and Comparison between Accelerated and Natural Degradation
,”
Polym. Degrad. Stab.
, Vol. 
107
,
2014
, pp. 
255
261
, https://doi.org/10.1016/j.polymdegradstab.2013.12.018
12.
Silva
,
M. A. G.
,
da Fonseca
,
B. S.
, and
Biscaia
,
H.
, “
On Estimates of Durability of FRP Based on Accelerated Tests
,”
Compos. Struct.
, Vol. 
116
,
2014
, pp. 
377
387
, https://doi.org/10.1016/j.compstruct.2014.05.022
13.
Zhang
,
J.
,
Li
,
W.
,
Cheng
,
G.
,
Chen
,
X.
,
Wu
,
H.
, and
Shen
,
M.-H. H.
, “
Life Prediction of OLED for Constant-Stress Accelerated Degradation Tests Using Luminance Decaying Model
,”
J. Lumin.
, Vol. 
154
,
2014
, pp. 
491
495
, https://doi.org/10.1016/j.jlumin.2014.05.024
14.
Paik
,
P.
and
Kar
,
K. K.
, “
Thermal Degradation Kinetics and Estimation of Lifetime of Polyethylene Particles: Effects of Particle Size
,”
Mater. Chem. Phys.
, Vol. 
113
, Nos. 
2–3
,
2009
, pp. 
953
961
, https://doi.org/10.1016/j.matchemphys.2008.08.075
15.
Alghassi
,
A.
,
Perinpanayagam
,
S.
,
Samie
,
M.
, and
Sreenuch
,
T.
, “
Computationally Efficient, Real-Time, and Embeddable Prognostic Techniques for Power Electronics
,”
IEEE Trans. Power Electron.
, Vol. 
30
, No. 
5
,
2015
, pp. 
2623
2634
, https://doi.org/10.1109/TPEL.2014.2360662
16.
Davachi
,
S. M.
,
Kaffashi
,
B.
,
Zamanian
,
A.
,
Torabinejadb
,
B.
, and
Ziaeirad
,
Z.
, “
Investigating Composite Systems Based on Poly L-Lactide and Poly L-Lactide/Triclosan Nanoparticles for Tissue Engineering and Medical Applications
,”
Mater. Sci. Eng.
, C, Vol. 
58
,
2016
, pp. 
294
309
, https://doi.org/10.1016/j.msec.2015.08.026
17.
Mulloni
,
V.
,
Lorenzelli
,
L.
,
Margesin
,
B.
,
Barbato
,
M.
, and
Meneghesso
,
G.
, “
Temperature as an Accelerating Factor for Lifetime Estimation of RF-MEMS Switches
,”
Microelectron. Eng.
, Vol. 
160
,
2016
, pp. 
63
67
, https://doi.org/10.1016/j.mee.2016.03.023
18.
Jiang
,
Q.
,
Rebollar
,
D.
,
Gong
,
J.
,
Piacentino
,
E. L.
,
Zheng
,
C.
, and
Xu
,
T.
, “
Pseudohalide-Induced Moisture Tolerance in Perovskite CH3NH3Pb(SCN)2I Thin Films
,”
Angew. Chem. Int. Ed.
, Vol. 
54
, No. 
26
,
2015
, pp. 
7617
7620
.
19.
Yao
,
J.
,
Xu
,
M.
, and
Zhong
,
W.
, “
Research of Step-Down Stress Accelerated Degradation Data Assessment Method of a Certain Type of Missile Tank
,”
Chin. J. Aeronaut.
, Vol. 
25
, No. 
6
,
2012
, pp. 
917
924
, https://doi.org/10.1016/S1000-9361(11)60462-7
20.
Kim
,
S.-J.
and
Bae
,
S. J.
, “
Cost-Effective Degradation Test Plan for a Nonlinear Random-Coefficients Model
,”
Reliab. Eng. Syst. Saf.
, Vol. 
110
,
2013
, pp. 
68
79
, https://doi.org/10.1016/j.ress.2012.09.010
21.
Cheng
,
S.
,
Yuan
,
Z.
,
Ye
,
X.
,
Zhang
,
F.
, and
Liu
,
J.
, “
Empirical Prediction Model for Li/SOCl2 Cells Based on the Accelerated Degradation Test
,”
Microelectron. Reliab.
, Vol. 
55
, No. 
1
,
2015
, pp. 
101
106
, https://doi.org/10.1016/j.microrel.2014.09.031
22.
Hu
,
C.-H.
,
Lee
,
M.-Y.
, and
Tang
,
J.
, “
Optimum Step-Stress Accelerated Degradation Test for Wiener Degradation Process under Constraints
,”
Eur. J. Oper. Res.
, Vol. 
241
, No. 
2
,
2015
, pp. 
412
421
, https://doi.org/10.1016/j.ejor.2014.09.003
23.
Kim
,
D. W.
,
Oh
,
H.
,
Youn
,
B. D.
, and
Kwon
,
D.
, “
Bivariate Lifetime Model for Organic Light-Emitting Diodes
,”
IEEE Trans. Ind. Electron.
, Vol. 
64
, No. 
3
,
2017
, pp. 
2325
2334
, https://doi.org/10.1109/TIE.2016.2623584
24.
Ye
,
Z.-S.
and
Xie
,
M.
, “
Stochastic Modeling and Analysis of Degradation for Highly Reliable Products
,”
Appl. Stochastic Models Bus. Ind.
, Vol. 
31
, No. 
1
,
2015
, pp. 
16
32
, https://doi.org/10.1002/asmb.2063
25.
Sun
,
B.
,
Fan
,
X. J.
,
Qian
,
C.
, and
Zhang
,
G. Q.
, “
PoF-Simulation-Assisted Reliability Prediction for Electrolytic Capacitor in LED Drivers
,”
IEEE Trans. Ind. Electron.
, Vol. 
63
, No. 
11
,
2016
, pp. 
6726
6735
, https://doi.org/10.1109/TIE.2016.2581156
26.
Hao
,
J.
,
Sun
,
Q.
,
Xu
,
Z.
,
Jing
,
L.
,
Wang
,
Y.
, and
Ke
,
H.-L.
, “
The Design of Two-Step-Down Aging Test for LED Lamps under Temperature Stress
,”
IEEE Trans. Electron Devices
, Vol. 
63
, No. 
3
,
2016
, pp. 
1148
1153
, https://doi.org/10.1109/TED.2016.2520961
27.
Tanoue
,
H.
,
Tanaka
,
A.
,
Oodate
,
Y.
,
Nakahagi
,
T.
,
Sugiyama
,
D.
,
Ma
,
C.
,
Mattausch
,
H. J.
, and
Miura-Mattausch
,
M.
, “
Compact Modeling of Dynamic MOSFET Degradation Due to Hot-Electrons
,”
IEEE Trans. Device Mater. Reliab.
, Vol. 
17
, No.
1
,
2017
, pp. 
52
58
, https://doi.org/10.1109/TDMR.2017.2655519
28.
Yang
,
H.
, “
Study on LED Reliability Test and Life Analysis Model
,” M.S. thesis,
Hangzhou Dianzi University
, Hangzhou, China,
2012
, pp. 
42
43
.
29.
Zhang
,
J.
and
Wang
,
R.
, “
Reliability Life Prediction of VFD by Constant Temperature Stress Accelerated Life Tests and Maximum Likelihood Estimation
,”
J. Test. Eval.
, Vol. 
37
, No. 
4
,
2009
, pp. 
316
320
, https://doi.org/10.1520/JTE102191
This content is only available via PDF.
You do not currently have access to this content.