Abstract

Process capability analysis (PCA) that can be defined as the ability of any process to satisfy customer demands expressed via specification limits (SLs) is effectively utilized as an important function of statistical process control in order to examine process variability. PCA provides information about conforming and nonconforming production rates that indicate the amount of products that fall inside and outside of SLs, respectively. It is possible to classify processes as “capable” and “incapable” according to values of process capability indexes (PCIs). Therefore, PCA has a wide usage and critical effects on the manufacturing process. The fuzzy set theory can be successfully utilized in order to cope with vagueness and to add more flexibility and sensitiveness into traditional PCIs. For this aim, upper and lower specification limits can be expressed by means of linguistic variables. Fuzzy process capability indexes (FPCIs) can be produced by using fuzzy mean and fuzzy variance. There are many studies that utilized FPCIs for PCA in the literature. This study seeks to present a comprehensive literature review for publications related to FPCIs. These studies have been analyzed according to some features of them, such as year, document type, journal name, and country. Also, classifications including FPCI, application area, fuzzy parameters, and type of fuzzy sets have been presented in this study. Additionally, some statistical analyses have been conducted. As a result, we desired to provide a roadmap for researchers in this field and to present recent advances regarding FPCIs. The main aim of this article is to show possible future research areas on fuzzy PCA.

References

1.
Kaya
,
I.
and
Kahraman
,
C.
, “
Fuzzy Process Capability Indices with Asymmetric Tolerances
,”
Expert Syst. Appl.
, Vol. 
38
, No. 
12
,
2011
, pp. 
14882
14890
, https://doi.org/10.1016/j.eswa.2011.05.059
2.
Kaya
,
I.
and
Kahraman
,
C.
, “
Fuzzy Process Capability Analyses with Fuzzy Normal Distribution
,”
Expert Syst. Appl.
, Vol. 
37
, No. 
7
,
2010
, pp. 
5390
5403
, https://doi.org/10.1016/j.eswa.2010.01.017
3.
Zadeh
,
L. A.
, “
Fuzzy Sets
,”
Inf. Control
, Vol. 
8
, No. 
3
,
1965
, pp. 
338
353
, https://doi.org/10.1016/S0019-9958(65)90241-X
4.
Kotz
,
S.
and
Johnson
,
N. L.
, “
Process Capability Indices—A Review, 1992–2000
,”
J. Qual. Technol.
, Vol. 
34
, No. 
1
,
2002
, pp. 
2
19
, https://doi.org/10.1080/00224065.2002.11980119
5.
Montgomery
,
D. C.
,
Introduction to Statistical Quality Control
,
John Wiley & Sons
,
New York, NY
,
2005
, 752p.
6.
Tsai
,
C. C.
and
Chen
,
C. C.
, “
Making Decision to Evaluate Process Capability Index Cp with Fuzzy Numbers
,”
Int. J. Adv. Manuf. Technol.
, Vol. 
30
, Nos. 
3–4
,
2006
, pp. 
334
339
, https://doi.org/10.1007/s00170-005-0052-7
7.
Kane
,
V. E.
, “
Process Capability Indices
,”
J. Qual. Technol.
, Vol. 
18
, No. 
1
,
1986
, pp. 
41
52
, https://doi.org/10.1080/00224065.1986.11978984
8.
Hsiang
,
T. C.
and
Taguchi
,
G.
, “
A Tutorial on Quality Control and Assurance—The Taguchi Methods
,” presented at the
ASA Annual Meeting
,
Las Vegas, NV
, Aug.
1985
.
9.
Chan
,
L. K.
,
Cheng
,
S. W.
, and
Spiring
,
F. A.
, “
A New Measure of Process Capability: Cpm
,”
J. Qual. Technol.
, Vol. 
20
, No. 
3
,
1988
, pp. 
162
175
, https://doi.org/10.1080/00224065.1988.11979102
10.
Wu
,
C.-W.
,
Pearn
,
W. L.
, and
Kotz
,
S.
, “
An Overview of Theory and Practice on Process Capability Indices for Quality Assurance
,”
Int. J. Prod. Econ.
, Vol. 
117
, No. 
2
,
2009
, pp. 
338
359
, https://doi.org/10.1016/j.ijpe.2008.11.008
11.
Pearn
,
W. L.
,
Kotz
,
S.
, and
Johnson
,
N. L.
, “
Distributional and Inferential Properties of Process Capability Indices
,”
J. Qual. Technol.
, Vol. 
24
, No. 
4
,
1992
, pp. 
216
231
, https://doi.org/10.1080/00224065.1992.11979403
12.
Chang
,
Y. C.
, “
Interval Estimation of Capability Index Cpmk for Manufacturing Processes with Asymmetric Tolerances
,”
Comput. Ind. Eng.
, Vol. 
56
, No. 
1
,
2009
, pp. 
312
322
, https://doi.org/10.1016/j.cie.2008.06.004
13.
Pearn
,
W. L.
, “
New Generalization of Process Capability Index Cpk
,”
J. Appl. Stat.
, Vol. 
25
, No. 
6
,
1998
, pp. 
801
810
, https://doi.org/10.1080/02664769822783
14.
Pearn
,
W. L.
,
Chen
,
K. S.
, and
Lin
,
G. H.
, “
A Generalization of Clements’ Method for Non-normal Pearsonian Processes with Asymmetric Tolerances
,”
Int. J. Qual. Reliab. Manage.
, Vol. 
16
, No. 
5
,
1999
, pp. 
507
522
, https://doi.org/10.1108/02656719910243618
15.
Kaya
,
I.
and
Kahraman
,
C.
, “
Development of Fuzzy Process Accuracy Index for Decision Making Problems
,”
Inf. Sci.
, Vol. 
180
, No. 
6
,
2010
, pp. 
861
872
, https://doi.org/10.1016/j.ins.2009.05.019
16.
Kaya
,
I.
and
Baraçli
,
H.
, “
Fuzzy Process Incapability Index with Asymmetric Tolerances
,”
J. Multiple Valued Logic Soft Comput.
, Vol. 
18
, Nos. 
5–6
,
2012
, pp. 
493
511
.
17.
Clements
,
J. A.
, “
Process Capability Calculations for Non-normal Distributions
,”
Qual. Prog.
, Vol. 
22
, No. 
9
,
1989
, pp. 
95
100
.
18.
Gruska
,
G. F.
,
Mirkhani
,
K.
, and
Lamberson
,
L. R.
,
Non-normal Data Analysis
,
Applied Computer Solutions, Inc.
,
St. Clare Shores, MI
,
1989
.
19.
Pearn
,
W. L.
,
Wu
,
C. W.
, and
Wang
,
K. H.
, “
Capability Measure for Asymmetric Tolerance Non-normal Processes Applied to Speaker Driver Manufacturing
,”
Int. J. Adv. Manuf. Technol.
, Vol. 
25
, Nos. 
5–6
,
2005
, pp. 
506
515
, https://doi.org/10.1007/s00170-003-1858-9
20.
Grau
,
D.
, “
New Capability Indices for Non Normal Processes
,”
Commun. Stat. Theory Methods
, Vol. 
39
, No. 
16
,
2010
, pp. 
2913
2929
, https://doi.org/10.1080/03610920903156839
21.
Zimmermann
,
H.-J.
,
Fuzzy Set Theory—and Its Applications
,
Kluwer Academic Publishers
,
Alphen aan den Rijn, the Netherlands
,
1991
, 441p.
22.
Mendel
,
J. M.
, “
Type-2 Fuzzy Sets and Systems: An Overview
,”
IEEE Comput. Intell. Mag.
, Vol. 
2
, No. 
1
,
2007
, pp. 
20
29
, https://doi.org/10.1109/MCI.2007.357235
23.
Mendel
,
J. M.
and
Wu
,
D.
,
Perceptual Computing: Aiding People in Making Subjective Judgments
,
Wiley-IEEE Press
,
Piscataway, NJ
,
2010
, 336p.
24.
Kiliç
,
M.
and
Kaya
,
I.
, “
Investment Project Evaluation by a Decision Making Methodology Based on Type-2 Fuzzy Sets
,”
Appl. Soft Comput.
, Vol. 
27
,
2015
, pp. 
399
410
, https://doi.org/10.1016/j.asoc.2014.11.028
25.
Celik
,
E.
,
Gul
,
M.
,
Aydın
,
N.
,
Gumus
,
A. T.
, and
Guneri
,
A. F.
, “
A Comprehensive Review of Multi Criteria Decision Making Approaches Based on Interval Type-2 Fuzzy Sets
,”
Knowledge Based Syst.
, Vol. 
85
,
2015
, pp. 
329
341
, https://doi.org/10.1016/j.knosys.2015.06.004
26.
Erdoğan
,
M.
and
Kaya
,
İ.
, “
A Combined Fuzzy Approach to Determine the Best Region for a Nuclear Power Plant in Turkey
,”
Appl. Soft Comput.
, Vol. 
39
,
2016
, pp. 
84
93
, https://doi.org/10.1016/j.asoc.2015.11.013
27.
Atanassov
,
K. T.
, “
Intuitionistic Fuzzy Sets
,”
Fuzzy Sets Syst.
, Vol. 
20
, No. 
1
,
1986
, pp. 
87
96
, https://doi.org/10.1016/S0165-0114(86)80034-3
28.
Bali
,
O.
,
Gumus
,
S.
, and
Kaya
,
I.
, “
A Multi-Period Decision Making Procedure Based on Intuitionistic Fuzzy Sets for Selection Among Third-Party Logistics Providers
,”
J. Multiple Valued Logic Soft Comput.
, Vol. 
24
, No. 
5
,
2015
, pp. 
547
569
.
29.
Ganji
,
Z. A.
and
Gildeh
,
B. S.
, “
A New Fuzzy Process Capability Index for Asymmetric Tolerance Interval
,”
Int. J. Fuzzy Syst. Appl.
, Vol. 
6
, No. 
3
,
2017
, pp. 
74
104
, https://doi.org/10.4018/IJFSA.2017070104
30.
Parchami
,
A.
,
Çevik Onar
,
S.
,
Öztayşi
,
B.
, and
Kahraman
,
C.
, “
Process Capability Analysis Using Interval Type-2 Fuzzy Sets
,”
Int. J. Comput. Intell. Syst.
, Vol. 
10
, No. 
1
,
2017
, pp. 
721
733
, https://doi.org/10.2991/ijcis.2017.10.1.48
31.
Kahraman
,
C.
,
Parchami
,
A.
,
Cevik Onar
,
S.
, and
Oztaysi
,
B.
, “
Process Capability Analysis Using Intuitionistic Fuzzy Sets
,”
J. Intell. Fuzzy Syst.
, Vol. 
32
, No. 
3
,
2017
, pp. 
1659
1671
, https://doi.org/10.3233/JIFS-141877
32.
Sheng
,
Z.
and
Cheng
,
L.
, “
A Method to Construct the Confidence Intervals for Process Capability Indices Based on Fuzzy Set Theory
,” presented at the
Third International Conference on Information Science and Control Engineering
, Beijing, China, July 8–10,
2016
,
IEEE
,
Piscataway, NJ
, pp. 
758
762
, https://doi.org/10.1109/ICISCE.2016.167
33.
Ganji
,
Z. A.
and
Gildeh
,
B. S.
, “
On the Multivariate Process Capability Vector in Fuzzy Environment
,”
Iran. J. Fuzzy Syst.
, Vol. 
13
, No. 
5
,
2016
, pp. 
147
159
.
34.
Ganji
,
Z. A.
and
Gildeh
,
B. S.
, “
Assessing Process Performance with Incapability Index Based on Fuzzy Critical Value
,”
Iran. J. Fuzzy Syst.
, Vol. 
13
, No. 
5
,
2016
, pp. 
21
34
.
35.
Rosyidi
,
C. N.
,
Murtisari
,
R.
, and
Jauhari
,
W. A.
, “
A Concurrent Optimization Model for Suppliers Selection, Tolerance and Component Allocation with Fuzzy Quality Loss
,”
Cogent Eng.
, Vol. 
3
, No. 
1
,
2016
, 1222043, https://doi.org/10.1080/23311916.2016.1222043
36.
Ganji
,
Z. A.
and
Gildeh
,
B. S.
, “
Fuzzy Multivariate Process Capability Vector
,”
J. Intell. Fuzzy Syst.
, Vol. 
30
, No. 
2
,
2016
, pp. 
1007
1017
, https://doi.org/10.3233/IFS-151823
37.
Darestani
,
S. A.
and
Nasiri
,
M.
, “
Statistical Process Control: Fuzzy - S Control Chart and Process Capability Indices in Normal Data Environment
,”
Int. J. Qual. Reliab. Manage.
, Vol. 
33
, No. 
1
,
2016
, pp. 
2
24
, https://doi.org/10.1108/IJQRM-08-2013-0130
38.
Wu
,
C.
,
Liao
,
M.
,
Lin
,
C.
, and
Lin
,
T.
, “
Testing and Ranking Multiple Wafer-Manufacturing Processes with Fuzzy-Quality Data
,”
J. Test. Eval.
, Vol. 
44
, No. 
5
,
2016
, pp. 
1970
1977
, https://doi.org/10.1520/JTE20150262
39.
Parchami
,
A.
and
Gildeh
,
B. S.
, “
Trends on Process Capability Indices in Fuzzy Environment
,”
Intelligent Decision Making in Quality Management
,
Springer, Cham
,
Switzerland
,
2016
, pp. 
127
140
, https://doi.org/10.1007/978-3-319-24499-0_5
40.
Abdolshah
,
M.
, “
Measuring Loss-Based Process Capability Index Le and Its Generation Le with Fuzzy Numbers
,”
Math. Prob. Eng.
, Vol. 
2015
,
2015
, 8p., https://doi.org/10.1155/2015/217406
41.
Parchami
,
A.
, “
Testing Fuzzy Quality in Engineering Management
,”
Intelligent Techniques in Engineering Management
,
Springer, Cham
,
Switzerland
,
2015
, pp. 
431
447
, https://doi.org/10.1007/978-3-319-17906-3_17
42.
Ganji
,
Z. A.
and
Gildeh
,
B. S.
, “
On the Fuzzy Multivariate Process Capability Vector
,” presented at the
Fourth Iranian Joint Congress on Fuzzy and Intelligent Systems
, Zahedan, Iran, Sep. 9–11,
2015
,
IEEE
,
Piscataway, NJ
, pp. 
1
7
, https://doi.org/10.1109/CFIS.2015.7391672
43.
Lee
,
W.-C.
,
Hong
,
C.-W.
, and
Wu
,
J.-W.
, “
Computational Procedure of Performance Assessment of Lifetime Index of Normal Products with Fuzzy Data under the Type II Right Censored Sampling Plan
,”
J. Intell. Fuzzy Syst.
, Vol. 
28
, No. 
4
,
2015
, pp. 
1755
1773
, https://doi.org/10.3233/IFS-141463
44.
Parchami
,
A.
,
Gildeh
,
B. S.
,
Nourbakhsh
,
M.
, and
Mashinchi
,
M.
, “
A New Generation of Process Capability Indices Based on Fuzzy Measurements
,”
J. Appl. Stat.
, Vol. 
41
, No. 
5
,
2014
, pp. 
1122
1136
, https://doi.org/10.1080/02664763.2013.862219
45.
Senvar
,
O.
and
Kahraman
,
C.
, “
Fuzzy Process Capability Indices Using Clements’ Method for Non-normal Processes
,”
J. Multiple Valued Logic Soft Comput.
, Vol. 
22
, Nos. 
1–2
,
2014
, pp. 
95
121
.
46.
Senvar
,
O.
and
Kahraman
,
C.
, “
Type-2 Fuzzy Process Capability Indices for Non-normal Processes
,”
J. Intell. Fuzzy Syst.
, Vol. 
27
, No. 
2
,
2014
, pp. 
769
781
, https://doi.org/10.3233/IFS-131035
47.
Wu
,
C.-W.
,
Liao
,
M.-Y.
, and
Lin
,
C.-Y.
, “
On Ranking Multiple Touch-Screen Panel Suppliers through the CTQ: Applied Fuzzy Techniques for Inspection with Unavoidable Measurement Errors
,”
Neural Comput. Appl.
, Vol. 
25
, No. 
2
,
2014
, pp. 
481
490
, https://doi.org/10.1007/s00521-013-1500-1
48.
Basu
,
S.
,
Dan
,
P. K.
, and
Thakur
,
A.
, “
Experimental Design in Soap Manufacturing for Optimization of Fuzzified Process Capability Index
,”
J. Manuf. Syst.
, Vol. 
33
, No. 
3
,
2014
, pp. 
323
334
, https://doi.org/10.1016/j.jmsy.2014.03.001
49.
Kaya
,
İ.
, “
The Process Incapability Index under Fuzziness with an Application for Decision Making
,”
Int. J. Comput. Intell. Syst.
, Vol. 
7
, No. 
1
,
2014
, pp. 
114
128
, https://doi.org/10.1080/18756891.2013.858905
50.
Keshavarzi
,
R.
and
Abooie
,
M. H.
, “
Performance Evaluation of Continuous Production Process by Trapezoidal Fuzzy Process Capability Indices
,”
Int. J. Process Manage. Benchmarking
, Vol. 
3
, No. 
3
,
2013
, pp. 
371
385
, https://doi.org/10.1504/IJPMB.2013.058161
51.
Liao
,
M.-Y.
,
Wu
,
C.-W.
, and
Wu
,
J.-W.
, “
Fuzzy Inference to Supplier Evaluation and Selection Based on Quality Index: A Flexible Approach
,”
Neural Comput. Appl.
, Vol. 
23
, No. 
S1
,
2013
, pp. 
117
127
, https://doi.org/10.1007/s00521-012-1266-x
52.
Abdolshah
,
M.
, “
A Fuzzy Taguchi Loss-Based Process Capability Index
,”
Int. J. Qual. Eng. Technol.
, Vol. 
3
, No. 
4
,
2013
, pp. 
303
318
, https://doi.org/10.1504/IJQET.2013.055875
53.
Parchami
,
A.
and
Mashinchi
,
M.
, “
Confidence Interval of Generalized Taguchi Index
,”
J. Intell. Fuzzy Syst.
, Vol. 
25
, No. 
3
,
2013
, pp. 
577
585
, https://doi.org/10.3233/IFS-120664
54.
Grau
,
D.
, “
Measuring Process Capability Index Cp(u,v) for Fuzzy Data and Fuzzy Requirements
,”
Int. J. Qual. Eng. Technol.
, Vol. 
3
, No. 
4
,
2013
, pp. 
273
288
, https://doi.org/10.1504/IJQET.2013.055873
55.
Gildeh
,
B. S.
and
Angoshtari
,
T.
, “
Monitoring Fuzzy Capability Index Cpk by Using the EWMA Control Chart with Imprecise Data
,”
Iran. J. Fuzzy Syst.
, Vol. 
10
, No. 
2
,
2013
, pp. 
111
132
, https://doi.org/10.22111/IJFS.2013.615
56.
Yen
,
C.-H.
, “
Fuzzy Testing for One-Sided Process Capability Indices
,”
Commun. Stat. Theory Methods
, Vol. 
41
, No. 
9
,
2012
, pp. 
1603
1616
, https://doi.org/10.1080/03610926.2010.546547
57.
Shu
,
M.-H.
and
Wu
,
H.-C.
, “
Manufacturing Process Performance Evaluation for Fuzzy Data Based on Loss-Based Capability Index
,”
Soft Comput.
, Vol. 
16
, No. 
1
,
2012
, pp. 
89
99
, https://doi.org/10.1007/s00500-011-0736-x
58.
Khodaygan
,
S.
and
Movahhedy
,
M. R.
, “
Fuzzy-Based Analysis of Process Capability for Assembly Quality Assessment in Mechanical Assemblies
,”
Int. J. Prod. Res.
, Vol. 
50
, No. 
12
,
2012
, pp. 
3395
3415
, https://doi.org/10.1080/00207543.2011.578168
59.
Gildeh
,
B. S.
and
Moradi
,
V.
, “
Fuzzy Tolerance Region and Process Capability Analysis
,”
Fuzzy Engineering and Operations Research
,
Springer, Cham
,
Switzerland
,
2012
, pp. 
183
193
, https://doi.org/10.1007/978-3-642-28592-9_19
60.
Gildeh
,
B. S.
and
Asghari
,
S.
, “
Confidence Interval for Cpm Based on Dp, q Distance
,”
J. Math. Stat.
, Vol. 
8
, No. 
1
,
2012
, pp. 
114
121
, https://doi.org/10.3844/jmssp.2012.114.121
61.
Gildeh
,
B. S.
and
Asghari
,
S.
, “
Inertial Capability Index Based on Fuzzy Data
,”
Int. J. Metrol. Qual. Eng.
, Vol. 
2
, No. 
1
,
2011
, pp. 
45
49
, https://doi.org/10.1051/ijmqe/2011008
62.
Kaya
,
İ.
, “
Fuzzy Estimations of Process Incapability Index
,” presented at the
Seventh Research/Expert Conference with International Participation, Quality 2011
, Neum, Bosnia and Herzegovina, June 1–4,
2011
,
University of Zenica, Faculty of Mechanical Engineering, Zenica
,
Bosnia and Herzegovina
, pp. 
387
392
.
63.
Zhao
,
K.
, “
Process Control of Minimax Based on the Process Target and on Process Capability Index, in Fuzzy Environment
,” presented at the
Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)
, Shanghai, China, July 26–28,
2011
,
IEEE
,
Piscataway, NJ
, pp. 
673
676
, https://doi.org/10.1109/FSKD.2011.6019697
64.
Parchami
,
A.
,
Mashinchi
,
M.
, and
Mashinchi
,
M. H.
, “
Approximate Confidence Interval for Generalized Taguchi Process Capability Index
,” presented at the
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011)
, Taipei, Taiwan, June 27–30,
2011
,
IEEE
,
Piscataway, NJ
, pp. 
2968
2971
, https://doi.org/10.1109/FUZZY.2011.6007629
65.
Kaya
,
İ.
and
Kahraman
,
C.
, “
Process Capability Analyses with Fuzzy Parameters
,”
Expert Syst. Appl.
, Vol. 
38
, No. 
9
,
2011
, pp. 
11918
11927
, https://doi.org/10.1016/j.eswa.2011.03.085
66.
Abdolshah
,
M.
,
Yusuff
,
R. M.
,
Hong
,
T. S.
,
Ismail
,
M. Y. B.
, and
Sadigh
,
A. N.
, “
Measuring Process Capability Index Cpmk with Fuzzy Data and Compare It with Other Fuzzy Process Capability Indices
,”
Expert Syst. Appl.
, Vol. 
38
, No. 
6
,
2011
, pp. 
6452
6457
, https://doi.org/10.1016/j.eswa.2010.11.101
67.
Ugurlu
,
S.
and
Kaya
,
I.
, “
A New Reliability Index Based on Fuzzy Process Capability Index for Travel Time in Multimodal Networks
,”
Int. J. Comput. Intell. Syst.
, Vol. 
4
, No. 
4
,
2011
, pp. 
550
565
, https://doi.org/10.1080/18756891.2011.9727812
68.
Kaya
,
İ.
and
Kahraman
,
C.
, “
A New Tool for Risk Assessment of Air Pollution: Fuzzy Process Capability Indices
,”
Hum. Ecol. Risk Assess.
, Vol. 
17
, No. 
3
,
2011
, pp. 
613
630
, https://doi.org/10.1080/10807039.2011.571090
69.
Kaya
,
İ.
and
Kahraman
,
C.
, “
Process Capability Analyses Based on Fuzzy Measurements and Fuzzy Control Charts
,”
Expert Syst. Appl.
, Vol. 
38
, No. 
4
,
2011
, pp. 
3172
3184
, https://doi.org/10.1016/j.eswa.2010.09.004
70.
Ramezani
,
Z.
,
Parchami
,
A.
, and
Mashinchi
,
M.
, “
Fuzzy Confidence Regions for the Taguchi Capability Index
,”
Int. J. Syst. Sci.
, Vol. 
42
, No. 
6
,
2011
, pp. 
977
987
, https://doi.org/10.1080/00207720903267890
71.
Kahraman
,
C.
and
Kaya
,
I.
, “
Fuzzy Estimations of Process Incapability Index
,” presented at the
World Congress on Engineering
, London, UK, July 6–8,
2011
,
International Association of Engineers, Kowloon
,
Hong Kong
, pp. 
1106
1110
.
72.
Kahraman
,
C.
,
Kaya
,
İ.
, and
Cebi
,
S.
, “
A Process Capability Index with Asymmetric Tolerances under Fuzzy Environment
,” presented at the
International Conference on Intelligent Systems and Knowledge Engineering
, Hangzhou, China, Nov. 15–16,
2010
,
IEEE
,
Piscataway, NJ
, pp. 
430
435
, https://doi.org/10.1109/ISKE.2010.5680834
73.
Liao
,
M.-Y.
and
Wu
,
C.-W.
, “
Evaluating Process Performance Based on the Incapability Index for Measurements with Uncertainty
,”
Expert Syst. Appl.
, Vol. 
37
, No. 
8
,
2010
, pp. 
5999
6006
, https://doi.org/10.1016/j.eswa.2010.02.005
74.
Kaya
,
İ.
and
Kahraman
,
C.
, “
A New Perspective on Fuzzy Process Capability Indices: Robustness
Expert Syst. Appl.
, Vol. 
37
, No. 
6
,
2010
, pp. 
4593
4600
, https://doi.org/10.1016/j.eswa.2009.12.049
75.
Kahraman
,
C.
and
Kaya
,
İ.
, “
Fuzzy Process Capability Analysis and Applications
,”
Production Engineering and Management under Fuzziness
,
Springer, Cham
,
Switzerland
,
2010
, pp. 
483
513
, https://doi.org/10.1007/978-3-642-12052-7_20
76.
Chen
,
C.-C.
,
Lai
,
C.-M.
, and
Nien
,
H.-Y.
, “
Measuring Process Capability Index Cpm with Fuzzy Data
,”
Qual. Quantity
, Vol. 
44
, No. 
3
,
2010
, pp. 
529
535
, https://doi.org/10.1007/s11135-008-9211-x
77.
Parchami
,
A.
,
Mashinchi
,
M.
, and
Sharayei
,
A.
, “
An Effective Approach for Measuring the Capability of Manufacturing Processes
,”
Prod. Plann. Control
, Vol. 
21
, No. 
3
,
2010
, pp. 
250
257
, https://doi.org/10.1080/09537280903313493
78.
Parchami
,
A.
and
Mashinchi
,
M.
, “
A New Generation of Process Capability Indices
,”
J. Appl. Stat.
, Vol. 
37
, No. 
1
,
2010
, pp. 
77
89
, https://doi.org/10.1080/02664760802695785
79.
Shu
,
M.-H.
and
Wu
,
H.-C.
, “
Measuring the Manufacturing Process Yield Based on Fuzzy Data
,”
Int. J. Prod. Res.
, Vol. 
48
, No. 
6
,
2010
, pp. 
1627
1638
, https://doi.org/10.1080/00207540802555751
80.
Senvar
,
O.
and
Tozan
,
H.
, “
Process Capability and Six Sigma Methodology Including Fuzzy and Lean Approaches
,”
Products and Services
,
Fuerstner
I.
, Ed.,
IntechOpen
,
London, UK
,
2010
, pp. 
153
178
, https://doi.org/10.5772/10389
81.
Shen
,
C.-Y.
and
Yu
,
K.-T.
, “
Enhancing the Efficacy of Supplier Selection Decision-Making on the Initial Stage of New Product Development: A Hybrid Fuzzy Approach Considering the Strategic and Operational Factors Simultaneously
,”
Expert Syst. Appl.
, Vol. 
36
, No. 
8
,
2009
, pp. 
11271
11281
, https://doi.org/10.1016/j.eswa.2009.02.083
82.
Wu
,
C.-W.
, “
Decision-Making in Testing Process Performance with Fuzzy Data
,”
Eur. J. Oper. Res.
, Vol. 
193
, No. 
2
,
2009
, pp. 
499
509
, https://doi.org/10.1016/j.ejor.2007.11.044
83.
Kahraman
,
C.
and
Kaya
,
İ.
, “
Fuzzy Process Accuracy Index to Evaluate Risk Assessment of Drought Effects in Turkey
,”
Hum. Ecol. Risk Assess.
, Vol. 
15
, No. 
4
,
2009
, pp. 
789
810
, https://doi.org/10.1080/10807030903051242
84.
Kaya
,
İ.
and
Kahraman
,
C.
, “
Air Pollution Control Using Fuzzy Process Capability Indices in the Six-Sigma Approach
,”
Hum. Ecol. Risk Assess.
, Vol. 
15
, No. 
4
,
2009
, pp. 
689
713
, https://doi.org/10.1080/10807030903050897
85.
Kahraman
,
C.
and
Kaya
,
İ.
, “
Fuzzy Process Capability Indices for Quality Control of Irrigation Water
,”
Stochastic Environ. Res. Risk Assess.
, Vol. 
23
, No. 
4
,
2009
, pp. 
451
462
, https://doi.org/10.1007/s00477-008-0232-8
86.
Kaya
,
İ.
and
Kahraman
,
C.
, “
Fuzzy Robust Process Capability Indices for Risk Assessment of Air Pollution
,”
Stochastic Environ. Res. Risk Assess.
, Vol. 
23
, No. 
4
,
2009
, pp. 
529
541
, https://doi.org/10.1007/s00477-008-0238-2
87.
Kaya
,
I.
and
Kahraman
,
C.
, “
Fuzzy Process Capability Analyses: An Application to Teaching Processes
,”
J. Intell. Fuzzy Syst.
, Vol. 
19
, Nos. 
4–5
,
2008
, pp. 
259
272
.
88.
Parchami
,
A.
,
Mashinchi
,
M.
, and
Nia
,
V. P.
, “
A Consistent Confidence Interval for Fuzzy Capability Index
,”
Appl. Comput. Math.
, Vol. 
7
, No. 
1
,
2008
, pp. 
143
161
.
89.
Chen
,
K. S.
and
Chen
,
T. W.
, “
Multi-process Capability Plot and Fuzzy Inference Evaluation
,”
Int. J. Prod. Econ.
, Vol. 
111
, No. 
1
,
2008
, pp. 
70
79
, https://doi.org/10.1016/j.ijpe.2006.12.056
90.
Hsu
,
B.-M.
and
Shu
,
M.-H.
, “
Fuzzy Inference to Assess Manufacturing Process Capability with Imprecise Data
,”
Eur. J. Oper. Res.
, Vol. 
186
, No. 
2
,
2008
, pp. 
652
670
, https://doi.org/10.1016/j.ejor.2007.02.023
91.
Chang
,
C.-W.
,
Wu
,
C.-R.
, and
Chen
,
H.-C.
, “
Applying a Fuzzy Analytic Network Process to Construct a Purchase Project. A Case for the Purchase of a Slicing Diamond Cutting Machine
,”
Prod. Plann. Control
, Vol. 
18
, No. 
8
,
2007
, pp. 
628
640
, https://doi.org/10.1080/09537280701589575
92.
Parchami
,
A.
and
Mashinchi
,
M.
, “
Fuzzy Estimation for Process Capability Indices
,”
Inf. Sci.
, Vol. 
177
, No. 
6
,
2007
, pp. 
1452
1462
, https://doi.org/10.1016/j.ins.2006.08.016
93.
Kaya
,
İ.
and
Kahraman
,
C.
, “
Air Pollution Control Using Six Sigma Approach
,” presented at the
First International Conference on Risk Analysis and Crisis Response
, Shanghai, China, Sep. 25–26,
2007
,
Risk Analysis Council of China Association for Disaster Prevention
, pp. 
110
115
.
94.
Parchami
,
A.
,
Mashinchi
,
M.
, and
Maleki
,
H. R.
, “
Fuzzy Confidence Interval for Fuzzy Process Capability Index
,”
J. Intell. Fuzzy Syst.
, Vol. 
17
, No. 
3
,
2006
, pp. 
287
295
.
95.
Parchami
,
A.
,
Mashinchi
,
M.
,
Yavari
,
A. R.
, and
Maleki
,
H. R.
, “
Process Capability Indices as Fuzzy Numbers
,”
Austrian J. Stat.
, Vol. 
34
, No. 
4
,
2005
, pp. 
391
402
, https://doi.org/10.17713/ajs.v34i4.425
96.
Parchami
,
A.
,
Mashinchi
,
M.
, and
Maleki
,
H. R.
, “
Confidence Interval for Fuzzy Process Capability Index
,”
WSEAS Trans. Syst.
, Vol. 
4
, No. 
5
,
2005
, pp. 
546
551
.
97.
Chen
,
T. W.
,
Lin
,
J. Y.
, and
Chen
,
K. S.
, “
Fuzzy Evaluation of Process Capability for Bigger-the-Best Type Products
,”
Int. J. Adv. Manuf. Technol.
, Vol. 
21
, Nos. 
10–11
,
2003
, pp. 
820
826
, https://doi.org/10.1007/s00170-002-1398-8
98.
Chen
,
T.-W.
,
Lin
,
J. Y.
, and
Chen
,
K. S.
, “
Selecting a Supplier by Fuzzy Evaluation of Capability Indices Cpm
,”
Int. J. Adv. Manuf. Technol.
, Vol. 
22
, Nos. 
7–8
,
2003
, pp. 
534
540
, https://doi.org/10.1007/s00170-002-1487-8
99.
Lee
,
H. T.
, “
Cpk Index Estimation Using Fuzzy Numbers
,”
Eur. J. Oper. Res.
, Vol. 
129
, No. 
3
,
2001
, pp. 
683
688
, https://doi.org/10.1016/S0377-2217(99)00438-5
100.
Lee
,
Y.-H.
,
Wei
,
C.-C.
, and
Chang
,
C.-L.
, “
Fuzzy Design of Process Tolerances to Maximise Process Capability
,”
Int. J. Adv. Manuf. Technol.
, Vol. 
15
, No. 
9
,
1999
, pp. 
655
659
, https://doi.org/10.1007/s001700050115
101.
Yongting
,
C.
, “
Fuzzy Quality and Analysis on Fuzzy Probability
,”
Fuzzy Sets Syst.
, Vol. 
83
, No. 
2
,
1996
, pp. 
283
290
, https://doi.org/10.1016/0165-0114(95)00383-5
This content is only available via PDF.
You do not currently have access to this content.