Abstract

Granular columns derive their load capacity from the confinement offered by the surrounding soil. However, lateral support can be problematic in extremely soft soil. Granular columns, when embedded in very soft clay, may bulge because of a lack of confinement offered by the surrounding soil. To avoid these problems, additional confinement can be provided by using geogrid or geosynthetic encasement. This study investigates a method of encasement construction with the aim of using waste tires to build columns. Without any recycling pretreatment, waste tires were used as material for stone encasement. Tires were stacked vertically to form a column frame structure and were bonded together using infinite screws and tightened with bolts. The diameter of the stone columns was that of a nominal car tire in all tests. A similar geosynthetically encased stone column with identical geometrical properties was also tested. Load tests were performed on both geotextile and tire-encased columns in a clay bed medium under incremental surcharge loads. To measure the bucking deformations of the column section using photogrammetric methods, unconfined loading tests were conducted under the same loading conditions. Results obtained from small-scale laboratory tests show that tire encasement makes the stone columns stiffer and stronger than traditional geotextile-encased stone columns.

References

1.
Barksdale
,
R. D.
and
Bachus
,
R. C.
,
Design and Construction of Stone Columns, Report No. FHWA/RD-83/026
,
Federal Highway Administration
,
Washington, DC
,
1983
, 210p.
2.
Abusharar
,
S. W.
and
Han
,
J.
, “
Two-Dimensional Deep-Seated Slope Stability Analysis of Embankments over Stone Column-Improved Soft Clay
,”
Eng. Geol.
, Vol. 
120
, Nos. 
1–4
,
2011
, pp. 
103
110
, https://doi.org/10.1016/j.enggeo.2011.04.002
3.
Almeida
,
M. S. S.
,
Hosseinpour
,
I.
, and
Riccio
,
M.
, “
Performance of a Geosynthetic-Encased Column (GEC) in Soft Ground: Numerical and Analytical Studies
,”
Geosynth. Int.
, Vol. 
20
, No. 
4
,
2013
, pp. 
252
262
, https://doi.org/10.1680/gein.13.00015
4.
Zhang
,
Z.
,
Han
,
J.
, and
Ye
,
G.
,
Numerical Investigation on Factors for Deep-Seated Slope Stability of Stone Column-Supported Embankments over Soft Clay
,”
Eng. Geol.
, Vol. 
168
,
2014
, pp. 
104
113
, https://doi.org/10.1016/j.enggeo.2013.11.004
5.
Ali
,
K.
,
Shahu
,
J. T.
, and
Sharma
,
K. G.
, “
Model Tests on Single and Groups of Stone Columns with Different Geosynthetic Reinforcement Arrangement
,”
Geosynth. Int.
, Vol. 
21
, No. 
2
,
2014
, pp. 
103
118
, https://doi.org/10.1680/gein.14.00002
6.
Chen
,
J. F.
,
Li
,
L. Y.
,
Xue
,
J. F.
, and
Feng
,
S. Z.
, “
Failure Mechanism of Geosynthetic-Encased Stone Columns in Soft Soils under Embankment
,”
Geotext. Geomembr.
, Vol. 
43
, No. 
5
,
2015
, pp. 
424
431
, https://doi.org/10.1016/j.geotexmem.2015.04.016
7.
Shahu
,
J. T.
and
Reddy
,
Y. R.
, “
Estimating Long-Term Settlement of Floating Stone Column Groups
,”
Can. Geotech. J.
, Vol. 
51
, No. 
7
,
2014
, pp. 
770
781
, https://doi.org/10.1139/cgj-2012-0477
8.
Ye
,
G. B.
,
Zhang
,
Z.
,
Han
,
J.
,
Xing
,
H. F.
,
Huang
,
M. S.
, and
Xiang
,
P. L.
, “
Performance Evaluation of an Embankment on Soft Soil Improved by Deep Mixed Columns and Prefabricated Vertical Drains
,”
J. Perform. Constr. Facil.
, Vol. 
27
, No. 
5
,
2013
, pp. 
614
623
, https://doi.org/10.1061/(ASCE)CF.1943-5509.0000369
9.
Yoo
,
C.
and
Lee
,
D.
, “
Performance of Geogrid-Encased Stone Columns in Soft Ground: Full-Scale Load Tests
,”
Geosynth. Int.
, Vol. 
19
, No. 
6
,
2012
, pp. 
480
490
, https://doi.org/10.1680/gein.12.00033
10.
Yoo
,
C.
,
Settlement Behavior of Embankment on Geosynthetic-Encased Stone Column Installed Soft Ground–A Numerical Investigation
,”
Geotext. Geomembr.
, Vol. 
43
, No. 
6
,
2015
, pp. 
484
492
, https://doi.org/10.1016/j.geotexmem.2015.07.014
11.
Wu
,
C.-S.
and
Hong
,
Y.-S.
, “
A Simplified Approach for Evaluating the Bearing Performance of Encased Granular Columns
,”
Geotext. Geomembr.
, Vol. 
42
, No. 
4
,
2014
, pp. 
339
347
, https://doi.org/10.1016/j.geotexmem.2014.05.006
12.
Kempfert
,
H.-G.
, “
Ground Improvement Methods with Special Emphasis on Column-Type Techniques
,” presented at the
International Workshop on Geotechnics of Soft Soils–Theory and Practice
, Noordwijkerhout, the Netherlands, Sep. 17–19,
2003
,
VGE Verlag
, pp. 
101
112
.
13.
Nods
,
M.
, “
Put a Sock in It: Geotextile Encased Sand Columns are Preventing Settlement of a High-Speed Railway Embankment in the Netherlands
,”
Ground Eng.
, Vol. 
35
,
2002
, p. 25.
14.
Raithel
,
M.
,
Kempfert
,
H.-G.
, and
Kirchner
,
A.
, “
Geotextiles Encased Columns (GEC) for Foundation of a Dike on Very Soft Soils
,” presented at the
Seventh International Conference on Geosynthetics
, Nice, France, Sep. 22–27, 2002,
Balkema Publishers
,
Leiden, the Netherlands
, Vol. 3,
2002
, pp. 
1025
1030
.
15.
Sharma
,
R. S.
,
Phani Kumar
,
B. R.
, and
Nagendra
,
G.
, “
Compressive Load Response of Granular Piles Reinforced with Geogrids
,”
Can. Geotech. J.
, Vol. 
41
, No. 
1
,
2004
, pp. 
187
192
, https://doi.org/10.1139/t03-075
16.
Tang
,
L.
,
Cong
,
S.
,
Ling
,
X.
,
Lu
,
J.
, and
Elgamal
,
A.
, “
Numerical Study on Ground Improvement for Liquefaction Mitigation Using Stone Columns Encased with Geosynthetics
,”
Geotext. Geomembr.
, Vol. 
43
, No. 
2
,
2015
, pp. 
190
195
, https://doi.org/10.1016/j.geotexmem.2014.11.011
17.
Dash
,
S. K.
and
Bora
,
M. C.
, “
Improved Performance of Soft Clay Foundations Using Stone Columns and Geocell–Sand Mattress
,”
Geotext. Geomembr.
, Vol. 
41
,
2013
, pp. 
26
35
, https://doi.org/10.1016/j.geotexmem.2013.09.001
18.
Van Impe
,
W. F.
and
Silence
,
P.
, “
Improving of the Bearing Capacity of Weak Hydraulic Fills by Means of Geotextiles
,” presented at the
Third International Conference on Geotextiles
,
Vienna, Austria
, April 7–11,
1986
, pp. 
1411
1416
.
19.
Kempfert
,
H.-G.
and
Wallis
,
P.
, “
Geokunststoffummantel-te Sandsäulen – ein neues Gründungsverfahren im Verkehrswegebau
. 5. Informations- und Vortragsveranstal-tung über „Kunststoffe in der Geotechnik“,”
Sonderheft Geotechnik
,
1997
, pp. 
41
46
.
20.
Deb
,
K.
,
Samadhiya
,
N. K.
, and
Namdeo
,
J. B.
, “
Laboratory Model Studies on Unreinforced and Geogrid-Reinforced Sand Bed over Stone Column-Improved Soft Clay
,”
Geotext. Geomembr.
, Vol. 
29
, No. 
2
,
2011
, pp. 
190
196
, https://doi.org/10.1016/j.geotexmem.2010.06.004
21.
Ghazavi
,
M.
and
Afshar
,
J. N.
, “
Bearing Capacity of Geosynthetic Encased Stone Columns
,”
Geotext. Geomembr.
, Vol. 
38
,
2013
, pp. 
26
36
, https://doi.org/10.1016/j.geotexmem.2013.04.003
22.
Babu
,
M. R. D.
,
Nayak
,
S.
, and
Shivashankar
,
R.
, “
A Critical Review of Construction, Analysis and Behaviour of Stone Columns
,”
Geotech. Geol. Eng.
, Vol. 
31
, No. 
1
,
2013
, pp. 
1
22
, https://doi.org/10.1007/s10706-012-9555-9
23.
Das
,
P.
and
Pal
,
S. K.
, “
A Study of the Behavior of Stone Column in Local Soft and Loose Layered Soil
,”
J. EJGE
, Vol. 
18
,
2013
, pp. 
1777
1786
.
24.
DIN 1026-1
Hot Rolled Steel Channels–Part 1: Taper Flange Steel Channels–Dimensions, Masses and Sectional Properties
,
German Institute for Standardization
,
Berlin, Germany
,
2002
, www.din.de/en
25.
ASTM D4253-00
Standard Test Method for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2000
, www.astm.org
26.
ASTM D4254-00
Standard Test Method for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2000
, www.astm.org
27.
ASTM D4595-86(1994)
Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method
(Superseded),
ASTM International
,
West Conshohocken, PA
,
1986
, www.astm.org
28.
Brown
,
D. C.
, “
Close-Range Camera Calibration
,”
Photogramm. Eng. Remote Sens.
, Vol. 
37
, No. 
8
,
1971
, pp. 
855
866
.
29.
van Impe
,
W.
,
Soil Improvement Techniques and Their Evolution
,
Balkema Publishers
,
Rotterdam, The Netherlands
,
1989
, 131p.
30.
Ayadat
,
T.
and
Hanna
,
T. H.
, “
Performance of Vibro Columns in Collapsible Soils
,” presented at the
Indian Conference on Geotechnical Analysis Practice and Performance
,
Surat, India
,
1991
, pp. 
383
386
.
31.
Greenwood
,
D. A.
, “
Mechanical Improvement of Soils below Ground Surface
,” presented at the
Ground Engineering Proceedings Conference
,
Institution of Civil Engineers
,
London
,
1970
, pp. 
11
22
.
32.
Hughes
,
J. M. O.
and
Withers
,
N. J.
, “
Reinforcing of Soft Cohesive Soils with Stone Columns
,”
Ground Eng.
, Vol. 
7
, No. 
3
,
1974
, pp. 
42
49
.
33.
Bathurst
,
R. J.
and
Karpurapu
,
R.
, “
Large-Scale Triaxial Compression Testing of Geocell-Reinforced Granular Soils
,”
Geotech. Test. J.
, Vol. 
16
, No. 
3
,
1993
, pp. 
296
303
, https://doi.org/10.1520/GTJ10050J
34.
Rajagopal
,
K.
,
Krishnaswamy
,
N. R.
, and
Madhavi Latha
,
G.
, “
Behaviour of Sand Confined with Single and Multiple Geocells
Geotext. Geomembr.
, Vol. 
17
, No. 
3
,
1999
, pp. 
171
184
, https://doi.org/10.1016/S0266-1144(98)00034-X
35.
Madhavi Latha
,
G.
,
Rajagopal
,
K.
, and
Krishnaswamy
,
N. R.
, “
Experimental and Theoretical Investigations on Geocell-Supported Embankments
,”
Int. J. Geomech.
, Vol. 
6
, No. 
1
,
2006
, pp. 
30
35
, https://doi.org/10.1061/(ASCE)1532-3641(2006)6:1(30)
This content is only available via PDF.
You do not currently have access to this content.