Abstract

There is no standardized test method specifically for determining the thermal resistance (R-value) of air-filled mattresses. Unacceptable inter- and intra-laboratory variations in round-robin testing have been attributed to differences in the test apparatus and test parameters used. To identify relevant sources of variation, the repeatability of the guarded hotplate apparatus (in a double plate configuration) was first characterized, and then the effect of modifying selected test parameters on mattress thickness and thermal resistance was investigated. Two mattress types, in two different sizes, were examined: one contained air only while the other contained air plus a nonwoven polyester fill. It was found that repeatable outcomes could be attained when using the guarded hotplate apparatus (95 % repeatability limit of less than 0.08 m2K/W for all mattresses tested). The modification of test parameters had significant effects on mattress thickness or R-value, or both. External pressure, the temperature difference across the specimen, supplementary insulation, mattress size, and environmental conditions affected both the thickness and R-value of the test mattresses. Inflation pressure, over the range tested, did not have a significant effect on the R-value but did influence mattress thickness. This work highlights the need for the standardization of the test apparatus and test parameters and will aid in the development of a standardized test method.

References

1.
Shen
,
X.
, “
Sleeping Pad Thermal Resistance (R-value) Test Method – Phase 1 Development
,” ASTM WK59903,
2016
—unpublished
2.
ASTM E177-14
Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
3.
ISO 8302
Thermal Insulation – Determination of Steady-State Thermal Resistance and Related Properties – Guarded Hot Plate Apparatus
,
International Organization for Standardization
,
Geneva, Switzerland
,
1991
, www.iso.org
4.
BS 4745
Determination of the Thermal Resistance of Textiles – Two Plate Method: Fixed Pressure Procedure, Two-Plate Method: Fixed Opening Procedure, and Single Plate Method
,
British Standards Institute
,
London, UK
,
2005
, www.bsigroup.com
5.
ISO 11092
Textiles – Physiological Effects – Measurement of Thermal and Water-Vapour Resistance Under Steady-State Conditions (Sweating Guarded-Hotplate Test)
,
International Organization for Standardization
,
Geneva, Switzerland
,
2014
, www.iso.org
6.
DIN EN 12667
Thermal Performance of Building Materials and Products – Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods
,
Deutsches Institut für Normung
,
Berlin, Germany
,
2001
, www.din.de
7.
ISO 15831
Clothing – Physiological Effects – Measurement of Thermal Insulation by Means of a Thermal Manikin
,
International Organization for Standardization
,
Geneva, Switzerland
,
2004
, www.iso.org
8.
ASTM C177-13
Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus
,
ASTM International
,
West Conshohocken, PA
,
2013
, www.astm.org
9.
ASTM C687-12
Standard Practice for Determination of Thermal Resistance of Loose-Fill Building Insulation
,
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
10.
ASTM D1518-14
Standard Test Method for Thermal Resistance of Batting Systems Using a Hot Plate
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
11.
ISO 5085-1
Textiles – Determination of Thermal Resistance – Part 1: Low Thermal Resistance
,
International Organization for Standardization
,
Geneva, Switzerland
,
1989
, www.iso.org
12.
DIN EN 12939
Thermal Performance of Building Materials and Products. Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods – Thick Products of High and Medium Thermal Resistance
,
Deutsches Institut für Normung
,
Berlin, Germany
,
2001
, www.din.de
13.
Defloor
,
T.
, “
The Effect of Position and Mattress on Interface Pressure
,”
Appl. Nurs. Res.
, Vol. 
13
, No. 
1
,
2000
, pp. 
2
11
, https://doi.org/10.1016/S0897-1897(00)80013-0
14.
Vanderwee
,
K.
,
Grypdonck
,
M.
, and
Defloor
,
T.
, “
Alternating Pressure Air Mattresses as Prevention for Pressure Ulcers: A Literature Review
,”
Int. J. Nurs. Stud.
, Vol. 
45
, No. 
5
,
2008
, pp. 
784
801
, https://doi.org/10.1016/j.ijnurstu.2007.07.003
15.
Stewart
,
T. P.
,
McKay
,
M. G.
, and
Magnano
,
S.
, “
Pressure Relief Characteristics of an Alternating Pressure System
,”
Decubitus
, Vol. 
3
, No. 
4
,
1990
, pp. 
26
29
.
16.
Boorman
,
J. G.
,
Carr
,
S.
, and
Kemble
,
J. V.
, “
A Clinical Evaluation of the Air-Fluidised Bed in a General Plastic Surgery Unit
,”
Br. J. Plast. Surg.
, Vol. 
34
, No. 
2
,
1981
, pp. 
165
168
, https://doi.org/10.1016/S0007-1226(81)80087-2
17.
Ryan
,
D. W.
and
Byrne
,
P.
, “
A Study of Contact Pressure Points in Specialised Beds
,”
Clin. Phys. Physiol. Meas.
, Vol. 
10
, No. 
4
,
1989
, pp. 
331
335
, https://doi.org/10.1088/0143-0815/10/4/004
18.
Bader
,
G. G.
and
Engdal
,
S.
, “
The Influence of Bed Firmness on Sleep Quality
,”
Appl. Ergon.
, Vol. 
31
, No. 
5
,
2000
, pp. 
487
497
, https://doi.org/10.1016/S0003-6870(00)00013-2
19.
McCluskey
,
P.
, “
Pad Comfort Pressure Survey
,” NEMO Equipment, (unpublished).
20.
ISO 139
Textiles – Standard Atmospheres for Conditioning and Testing
,
International Organization for Standardization
,
Geneva, Switzerland
,
2005
, www.iso.org
21.
ASTM D1776/D1776M-16
Standard Practice for Conditioning and Testing Textiles
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
22.
ASTM Subcommittee F22.08 Standard Test Method for Thermal Resistance of Camping Mattresses Using Guarded Hotplate Apparatus, WK59903,
2017
, (unpublished)
23.
Field
,
A. P.
,
Discovering Statistics Using SPSS
, Third Ed.,
SAGE
,
London, UK
,
2012
, 915p.
24.
Havenith
,
G.
, “
Heat Balance When Wearing Protective Clothing
,”
Ann. Occup. Hyg.
, Vol. 
43
, No. 
5
,
1999
, pp. 
289
296
, https://doi.org/10.1093/annhyg/43.5.289
25.
Wilson
,
C. A.
,
Laing
,
R. M.
, and
Carr
,
D. J.
, “
Air and Air Spaces – the Invisible Addition to Thermal Resistance
,”
J. Hum. Environ. Syst.
, Vol. 
5
, No. 
2
,
2002
, pp. 
69
77
, https://doi.org/10.1618/jhes.5.69
26.
Wilson
,
C. A.
,
Niven
,
B. E.
, and
Laing
,
R. M.
, “
Estimating Thermal Resistance of the Bedding Assembly from Thickness of Materials
,”
Int. J. Cloth. Sci. Technol.
, Vol. 
11
, No. 
5
,
1999
, pp. 
262
276
, https://doi.org/10.1108/09556229910297536
27.
Stephan
,
K.
and
Laesecke
,
A.
, “
The Thermal Conductivity of Fluid Air
,”
J. Phys. Chem. Ref. Data
, Vol. 
14
, No. 
1
,
1985
, pp. 
227
234
, https://doi.org/10.1063/1.555749
28.
Bretsznajder
,
S.
, “
Thermal Conductivities of Gases
,”
Prediction of Transport and Other Physical Properties of Fluids
,
Pergamon Press
,
Oxford, UK
,
1971
, pp. 
240
288
, https://doi.org/10.1016/B978-0-08-013412-3.50008-8
29.
Yang
,
Y.
, “
Thermal Conductivity
,”
Physical Properties of Polymers Handbook
, Second Ed.,
Mark
J. E.
, Ed.,
Springer
,
New York, NY
,
2007
, pp. 
155
164
, https://doi.org/10.1007/978-0-387-69002-5
30.
Minter
,
C. C.
, “
Effect of Pressure on the Thermal Conductivity of a Gas
,” NRL Report 5907, Armed Services Technical Information Agency, Washington, DC,
1963
, 29p.
31.
Bartlett
,
J. W.
and
Frost
,
C.
, “
Reliability, Repeatability and Reproducibility: Analysis of Measurement Errors in Continuous Variables
,”
Ultrasound Obstet. Gynecol.
, Vol. 
31
, No. 
4
,
2008
, pp. 
466
475
, https://doi.org/10.1002/uog.5256
This content is only available via PDF.
You do not currently have access to this content.