Abstract

Around 11 billion tons of concrete ğused each year all over the world require considerable amounts of cement, which leads to extensive emissions of carbon dioxide. In the search for more environmentally friendly alternatives to conventional cement in order to reduce greenhouse gas emissions, glass powder (GP) is significant because of its high content of silica, availability, and cost and is increasingly becoming a part of cement replacement. This study examined the effects of replacing cement with three different colors of GP at different ratios on the workability and mechanical properties of high-strength mortars cured under three different curing temperatures. It was found that quantities of GP varying from 10 % to 20 % increased workability; strength changes occurred according to the hydration rate and strength activity index order of cement silica fume and GP specimens produced; and increasing the amount of GP from 10 % to 20 % decreased the resistance of mortar against penetration by chloride ions. Among the three water/binder (w/b) ratios (0.35, 0.40, and 0.45) and curing temperatures (22°C, 55°C, and 80°C), the maximum compressive and flexural strength were achieved with a 0.35 w/b ratio and 80°C curing temperature, the lowest with a 0.40 w/b ratio and 55°C curing temperature. At high w/b mixes, the strengths were mainly steered by the w/b ratio.

References

1.
Brito
,
J.
and
Silva
,
R.
, “
Use of Waste Materials in the Production of Concrete
,”
Key Eng. Mater.
, Vol. 
634
,
2014
, pp. 
85
96
, https://doi.org/10.4028/www.scientific.net/KEM.634.85
2.
Subaşı
,
S.
,
Öztürk
,
H.
, and
Emiroğlu
,
M.
, “
Utilizing of Waste Ceramic Powders as Filler Material in Self-Consolidating Concrete
,”
Constr. Build. Mater.
, Vol. 
149
,
2017
, pp. 
567
574
, https://doi.org/10.1016/j.conbuildmat.2017.05.180
3.
Jani
,
Y.
and
Hogland
,
W.
, “
Waste Glass in the Production of Cement and Concrete–A Review
,”
J. Environ. Chem. Eng.
, Vol. 
2
, No. 
3
,
2014
, pp. 
1767
1775
, https://doi.org/10.1016/j.jece.2014.03.016
4.
Ansari
,
I.
and
Sahare
,
S.
, “
Utilization of Glass Powder as a Partial Replacement of Cement and Its Effect on Concrete Strength–A Review
,” presented at the
45th IRF International Conference
, Pune, India, Dec. 13,
2015
,
Institute of Research and Journals (IRAJ)
,
Bhubaneswar, India
, pp. 
1
5
.
5.
Johnston
,
C. D.
, “
Waste Glass as Coarse Aggregate for Concrete
,”
J. Test. Eval.
, Vol. 
2
, No. 
5
,
1974
, pp. 
344
350
, https://doi.org/10.1520/JTE10117J
6.
Meyer
,
C.
and
Xi
,
Y.
, “
Use of Recycled Glass and Fly Ash for Precast Concrete
,”
J. Mater. Civ. Eng.
, Vol. 
11
, No. 
2
,
1999
, pp. 
89
90
, https://doi.org/10.1061/(ASCE)0899-1561(1999)11:2(89)
7.
Limbachiya
,
M.
,
Meddah
,
M. S.
, and
Fotiadou
,
S.
, “
Performance of Granulated Foam Glass Concrete
,”
Constr. Build. Mater.
, Vol. 
28
, No. 
1
,
2012
, pp. 
759
768
, https://doi.org/10.1016/j.conbuildmat.2011.10.052
8.
Islam
,
G. M. S.
,
Rahman
,
M. H.
, and
Kazi
,
N.
, “
Waste Glass Powder as Partial Replacement of Cement for Sustainable Concrete Practice
,”
Int. J. Sustainable Built Environ.
, Vol. 
6
, No. 
1
,
2017
, pp. 
37
44
, https://doi.org/10.1016/j.ijsbe.2016.10.005
9.
Schwarz
,
N.
and
Neithalath
,
N.
, “
Influence of a Fine Glass Powder on Cement Hydration: Comparison to Fly Ash and Modeling the Degree of Hydration
,”
Cem. Concr. Res.
, Vol. 
38
, No. 
4
,
2008
, pp. 
429
436
, https://doi.org/10.1016/j.cemconres.2007.12.001
10.
Shi
,
C.
,
Wu
,
Y.
,
Riefler
,
C.
, and
Wang
,
H.
, “
Characteristics and Pozzolanic Reactivity of Glass Powders
,”
Cem. Concr. Res.
, Vol. 
35
, No. 
5
,
2005
, pp. 
987
993
, https://doi.org/10.1016/j.cemconres.2004.05.015
11.
Shao
,
Y.
,
Lefort
,
T.
,
Moras
,
S.
, and
Rodriguez
,
D.
, “
Studies on Concrete Containing Ground Waste Glass
,”
Cem. Concr. Res.
, Vol. 
30
, No. 
1
,
2000
, pp. 
91
100
, https://doi.org/10.1016/S0008-8846(99)00213-6
12.
Idir
,
R.
,
Cyr
,
M.
, and
Tagnit-Hamou
,
A.
, “
Use of Fine Glass as ASR Inhibitor in Glass Aggregate Mortars
,”
Constr. Build. Mater.
, Vol. 
24
, No. 
7
,
2010
, pp. 
1309
1312
, https://doi.org/10.1016/j.conbuildmat.2009.12.030
13.
Khodabakhshian
,
A.
,
Ghalehnovi
,
M.
,
de Brito
,
J.
, and
Shamsabadi
,
E. A.
, “
Durability Performance of Structural Concrete Containing Silica Fume and Marble Industry Waste Powder
,”
J. Cleaner Prod.
, Vol. 
170
,
2018
, pp. 
42
60
, https://doi.org/10.1016/j.jclepro.2017.09.116
14.
Koutný
,
O.
,
Kratochvíl
,
J.
,
Švec
,
J.
, and
Bednárek
,
J.
, “
Modelling of Packing Density for Particle Composites Design
,”
Procedia Eng.
, Vol. 
151
,
2016
, pp. 
198
205
, https://doi.org/10.1016/j.proeng.2016.07.386
15.
Mohan
,
A.
and
Mini
,
K. M.
, “
Strength and Durability Studies of SCC Incorporating Silica Fume and Ultra-Fine GGBS
,”
Constr. Build. Mater.
, Vol. 
171
,
2018
, pp. 
919
928
, https://doi.org/10.1016/j.conbuildmat.2018.03.186
16.
EN 197-1
Cement–Part 1: Compositions, Specifications and Conformity Criteria for Common Cements
(Superseded),
2012
,
Deutsches Institut für Normung
,
Berlin, Germany
, www.din.de
17.
ASTM C136/C136M-14
Standard Test Method for Sieve Analysis of Fine and Coarse Aggregate
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
18.
ASTM C33/C33M-16
Standard Specification for Concrete Aggregates
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
19.
ASTM C494/C464M-16
Standard Specification for Chemical Admixtures for Concrete
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
20.
ASTM C305-14
Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
21.
ASTM C109/C109M-16
Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
22.
ASTM C1437-15
Standard Test Method for Flow of Hydraulic Cement Mortar
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
23.
ASTM C230/C230M-14
Standard Specification for Flow Table for Use in Tests for Hydraulic Cement
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
24.
ASTM C348-14
Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
25.
ASTM C349-14
Standard Test Method for Compressive Strength of Hydraulic-Cement Mortars (Using Portions of Prisms Broken in Flexure)
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
26.
ASTM C469/C469M-14
Standard Test Method for Static Modulus of Elasticity and Poission’s Ratio of Concrete in Compression
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
27.
ASTM C311/C311M-13
Standard Test for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2013
, www.astm.org
28.
ASTM C618-15
Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
29.
ASTM C1202-17
Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
30.
Wang
,
X. Y.
, “
Modeling of Hydration, Compressive Strength, and Carbonation of Portland-Limestone Cement (PLC) Concrete
,”
Materials
, Vol. 
10
, No. 
2
,
2017
, 115, https://doi.org/10.3390/ma10020115
31.
Elbar
,
M.
,
Senhadji
,
Y.
,
Benosman
,
A. S.
,
Khelafi
,
H.
, and
Mouli
,
M.
, “
Effect of Thermo-Activation on Mechanical Strengths and Chlorides Permeability in Pozzolanic Materials
,”
Case Stud. Constr. Mater.
, Vol. 
8
,
2018
, pp. 
459
468
, https://doi.org/10.1016/j.cscm.2018.04.001
32.
Shi
,
C.
,
Wu
,
Z.
,
Lv
,
K.
, and
Wu
,
L.
, “
A Review on Mixture Design Methods for Self-Compacting Concrete
,”
Constr. Build. Mater.
, Vol. 
84
,
2015
, pp. 
387
398
, https://doi.org/10.1016/j.conbuildmat.2015.03.079
33.
Nunes
,
S.
,
Matos
,
A. M.
,
Duarte
,
T.
,
Figueiras
,
H.
, and
Sousa-Coutinho
,
J.
, “
Mixture Design of Self-Compacting Glass Mortar
,”
Cem. Concr. Compos.
, Vol. 
43
,
2013
, pp. 
1
11
, https://doi.org/10.1016/j.cemconcomp.2013.05.009
This content is only available via PDF.
You do not currently have access to this content.