Abstract

The real-time acquisition of the rock mass mechanical parameters and the rapid classification of the surrounding rock during the construction of an underground structure are of great value for informational construction and optimization of the parameters of the supporting structure. However, it is currently difficult to rapidly acquire rock mass mechanical parameters at construction sites. The “digital drilling rig”–based drilling test technique is an effective approach for addressing this problem. Therefore, this study develops a multifunction true triaxial rock-drilling test system (TRD system). This system can be employed to test various types of rock or fractured rock masses to determine the correlations between the drilling parameters and the rock mechanical parameters under three-dimensional confining pressure conditions. This article introduces the basic features and the composition of each component of the TRD system. Drilling tests on different types of rock specimens under various control parameter conditions are performed, and the drilling tests on sandstone specimens under different confining pressures were carried out. The test results demonstrate significant correlations between the drilling parameters and between the drilling parameters and the rock mechanical parameters during the drilling process. The drilling parameters are responsive to confining pressure. The conclusions of the correlation analysis and the stable monitoring data obtained under various test parameter conditions verify the reasonableness and effectiveness of the TRD system’s structure. This study lays the foundation for further investigations of the quantitative relationships between the drilling parameters and the rock mechanical parameters and develops a key technology that uses the drilling parameters of a “digital drilling rig” to characterize the mechanical parameters of the surrounding rock at underground construction sites.

References

1.
Cao
,
R.-H.
,
Cao
,
P.
,
Lin
,
H.
,
Pu
,
C.-Z.
, and
Ou
,
K.
, “
Mechanical Behavior of Brittle Rock-Like Specimens with Pre-Existing Fissures under Uniaxial Loading: Experimental Studies and Particle Mechanics Approach
,”
Rock Mech. Rock Eng.
, Vol. 
49
, No. 
3
,
2016
, pp. 
763
783
, https://doi.org/10.1007/s00603-015-0779-x
2.
Fernandez-Rodriguez
,
R.
,
Gonzalez-Nicieza
,
C.
,
Lopez-Gayarre
,
F.
, and
Amor-Herrera
,
E.
, “
Characterization of Intensely Jointed Rock Masses by Means of In Situ Penetration Tests
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
72
,
2014
, pp. 
92
99
, https://doi.org/10.1016/j.ijrmms.2014.06.016
3.
Szymakowski
,
J.
, “
Shear Testing of Soft Rock Masses
,”
Geotech. Test. J.
, Vol. 
30
, No. 
2
,
2007
, pp. 
133
140
, https://doi.org/10.1520/GTJ100054
4.
Sun
,
Y.
,
Cheng
,
Q.
,
Lin
,
J.
,
Lammers
,
P. S.
,
Berg
,
A.
,
Meng
,
F.
,
Zeng
,
Q.
, and
Li
,
L.
, “
Energy-Based Comparison between a Dynamic Cone Penetrometer and a Motor-Operated Static Cone Penetrometer
,”
Soil Tillage Res.
, Vols. 
115–116
,
2011
, pp. 
105
109
, https://doi.org/10.1016/j.still.2011.06.005
5.
Gupta
,
T.
,
Chakraborty
,
T.
,
Abdel-Rahman
,
K.
, and
Achmus
,
M.
, “
Large Deformation Finite Element Analysis of Static Cone Penetration Test
,”
Indian Geotech. J.
, Vol. 
46
, No. 
2
,
2016
, pp. 
115
123
, https://doi.org/10.1007/s40098-015-0157-3
6.
Li
,
D.
and
Wong
,
L. N. Y.
, “
Point Load Test on Meta-Sedimentary Rocks and Correlation to UCS and BTS
,”
Rock Mech. Rock Eng.
, Vol. 
46
, No. 
4
,
2013
, pp. 
889
896
, https://doi.org/10.1007/s00603-012-0299-x
7.
Elhakim
,
A. F.
, “
The Use of Point Load Test for Dubai Weak Calcareous Sandstones
,”
J. Rock Mech. Geotech. Eng.
, Vol. 
7
, No. 
4
,
2015
, pp. 
452
457
, https://doi.org/10.1016/j.jrmge.2015.06.003
8.
Goktan
,
R. M.
and
Gunes
,
N.
, “
A Comparative Study of Schmidt Hammer Testing Procedures with Reference to Rock Cutting Machine Performance Prediction
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
42
, No. 
3
,
2005
, pp. 
466
472
, https://doi.org/10.1016/j.ijrmms.2004.12.002
9.
Wang
,
H.
,
Lin
,
H.
, and
Cao
,
P.
, “
Correlation of UCS Rating with Schmidt Hammer Surface Hardness for Rock Mass Classification
,”
Rock Mech. Rock Eng.
, Vol. 
50
, No. 
1
,
2017
, pp. 
195
203
, https://doi.org/10.1007/s00603-016-1044-7
10.
Ngan-Tillard
,
D. J. M.
,
Verwaal
,
W.
,
Mulder
,
A.
,
Engin
,
H. K.
, and
Ulusay
,
R.
, “
Application of the Needle Penetration Test to a Calcarenite, Maastricht, the Netherlands
,”
Eng. Geol.
, Vol. 
123
, No. 
3
,
2011
, pp. 
214
224
, https://doi.org/10.1016/j.enggeo.2011.08.004
11.
Ngan-Tillard
,
D. J. M.
,
Engin
,
H. K.
,
Verwaal
,
W.
,
Mulder
,
A.
,
Ulusay
,
R.
, and
Erguler
,
Z. A.
, “
Evaluation of Micro-Structural Damage Caused by Needle Penetration Testing
,”
Bull. Eng. Geol. Environ.
, Vol. 
71
, No. 
3
,
2012
, pp. 
487
498
, https://doi.org/10.1007/s10064-012-0430-y
12.
Aoki
,
H.
and
Matsukura
,
Y.
, “
Estimating the Unconfined Compressive Strength of Intact Rocks from Equotip Hardness
,”
Bull. Eng. Geol. Environ.
, Vol. 
67
, No. 
1
,
2008
, pp. 
23
29
, https://doi.org/10.1007/s10064-007-0116-z
13.
Viles
,
H.
,
Goudie
,
A.
,
Grab
,
S.
, and
Lalley
,
J.
, “
The Use of the Schmidt Hammer and Equotip for Rock Hardness Assessment in Geomorphology and Heritage Science: A Comparative Analysis
,”
Earth Surf. Process. Landforms
, Vol. 
36
, No. 
3
,
2011
, pp. 
320
333
, https://doi.org/10.1002/esp.2040
14.
Aalizad
,
S. A.
and
Rashidinejad
,
F.
, “
Prediction of Penetration Rate of Rotary-Percussive Drilling Using Artificial Neural Networks-A Case Study
,”
Arch. Min. Sci.
, Vol. 
57
, No. 
3
,
2012
, pp. 
715
728
.
15.
Chen
,
J.
and
Yue
,
Z. Q.
, “
Ground Characterization Using Breaking-Action-Based Zoning Analysis of Rotary-Percussive Instrumented Drilling
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
75
,
2015
, pp. 
33
43
, https://doi.org/10.1016/j.ijrmms.2014.11.008
16.
Huang
,
S. L.
and
Wang
,
Z. W.
, “
The Mechanics of Diamond Core Drilling of Rocks
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
34
, Nos. 
3
4
,
1997
, pp. 134.e1–134.e14, https://doi.org/10.1016/S1365-1609(97)80029-9
17.
Patel
,
A.
, “
Characterization of Cavities in Rocks Using Drilling Parameters
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
63
, No. 
5
,
2013
, pp. 
122
130
, https://doi.org/10.1016/j.ijrmms.2013.08.014
18.
Schunnesson
,
H.
, “
RQD Predictions Based on Drill Performance Parameters
,”
Tunnelling Underground Space Technol.
, Vol. 
11
, No. 
3
,
1996
, pp. 
345
351
, https://doi.org/10.1016/0886-7798(96)00024-7
19.
Schunnesson
,
H.
Rock Characterization Using Percussive Drilling
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
35
, No. 
6
,
1998
, pp. 
711
725
, https://doi.org/10.1016/S0148-9062(97)00332-X
20.
Yamashita
,
M.
,
Fukui
,
K.
, and
Okubo
,
S.
, “
Prediction of the Rock Properties Ahead of a Tunnel Face by Percussive Long-Hole Drilling
,”
Int. J. Jpn. Comm. Rock Mech.
, Vol. 
4
, No. 
1
,
2008
, pp. 
9
13
.
21.
Yue
,
Z. Q.
,
Lee
,
C. F.
,
Law
,
K. T.
, and
Tham
,
L. G.
, “
Automatic Monitoring of Rotary-Percussive Drilling for Ground Characterization-Illustrated by a Case Example in Hong Kong
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
41
, No. 
4
,
2004
, pp. 
573
612
, https://doi.org/10.1016/j.ijrmms.2003.12.151
22.
Teale
,
R.
, “
The Concept of Specific Energy in Rock Drilling
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
, Vol. 
2
, No. 
1
,
1965
, pp. 
57
73
, https://doi.org/10.1016/0148-9062(65)90022-7
23.
Mostofi
,
M.
,
Rasouli
,
V.
, and
Mawuli
,
E.
, “
An Estimation of Rock Strength Using a Drilling Performance Model: A Case Study in Blacktip Field, Australia
,”
Rock Mech. Rock Eng.
, Vol. 
44
, No. 
3
,
2011
, pp. 
305
316
, https://doi.org/10.1007/s00603-011-0142-9
24.
Karasawa
,
H.
,
Ohno
,
T.
,
Kosugi
,
M.
, and
Rowley
,
J. C.
, “
Methods to Estimate the Rock Strength and Tooth Wear While Drilling with Roller-Bits–Part 1: Milled-Tooth Bits
,”
J. Energy Resour. Technol.
, Vol. 
124
, No. 
3
,
2002
, pp. 
125
132
, https://doi.org/10.1115/1.1482405
25.
Karasawa
,
H.
,
Ohno
,
T.
,
Kosugi
,
M.
, and
Rowley
,
J. C.
, “
Methods to Estimate the Rock Strength and Tooth Wear While Drilling with Roller-Bits-Part 2: Insert Bits
,”
J. Energy Resour. Technol.
, Vol. 
124
, No. 
3
,
2002
, pp. 
133
140
, https://doi.org/10.1115/1.1482406
26.
Yaşar
,
E.
,
Ranjith
,
P. G.
, and
Viete
,
D. R.
, “
An Experimental Investigation into the Drilling and Physico-Mechanical Properties of a Rock-Like Brittle Material
,”
J. Pet. Sci. Eng.
, Vol. 
76
, Nos. 
3–4
,
2011
, pp. 
185
193
, https://doi.org/10.1016/j.petrol.2011.01.011
27.
Li
,
N.
,
Li
,
Q.
, and
Song
,
L.
, “
Acquiring Mechanical Parameters of Rock Based on Rotational Cutting
,”
Chin. J. Rock Mech. Eng.
, Vol. 
34
, No. 
2
,
2015
, pp. 
323
329
.
28.
Yang
,
W. W.
,
Yue
,
Z. Q.
, and
Tham
,
L. G.
, “
Automatic Monitoring of Inserting or Retrieving SPT Sampler in Drillhole
,”
Geotech. Test. J.
, Vol. 
35
, No. 
3
,
2012
, pp. 
420
436
, https://doi.org/10.1520/GTJ103450
29.
Detournay
,
E.
and
Tan
,
C. P.
, “
Dependence of Drilling Specific Energy on Bottom-Hole Pressure in Shales
,” presented at the
SPE/ISRM Rock Mechanics Conference
, Irving, Texas, Oct. 20–23,
2002
,
Society of Petroleum Engineers
,
Richardson, TX
, pp. 
1
10
.
30.
Detournay
,
E.
,
Richard
,
T.
, and
Shepherd
,
M.
, “
Drilling Response of Drag Bits: Theory and Experiment
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
45
, No. 
8
,
2008
, pp. 
1347
1360
, https://doi.org/10.1016/j.ijrmms.2008.01.010
31.
Yang
,
S.-Q.
,
Jing
,
H.-W.
, and
Wang
,
S.-Y.
, “
Experimental Investigation on the Strength, Deformability, Failure Behavior and Acoustic Emission Locations of Red Sandstone under Triaxial Compression
,”
Rock Mech. Rock Eng.
, Vol. 
45
, No. 
4
,
2012
, pp. 
583
606
, https://doi.org/10.1007/s00603-011-0208-8
32.
Guo
,
F. L.
,
Zhang
,
D. L.
,
Su
,
J.
, and
Xiao
,
C. M.
, “
Experimental Study on Influences of Groundwater and Confining Pressure on Mechanical Behaviors of Soft Rocks
,”
Chin. J. Rock Mech. Eng.
, Vol. 
26
, No. 
11
,
2007
, pp. 
2324
2332
.
33.
Hokka
,
M.
,
Black
,
J.
,
Tkalich
,
D.
,
Fourmeau
,
M.
,
Kane
,
A.
,
Hoang
,
N.-H.
,
Li
,
C. C.
,
Chen
,
W. W.
, and
Kuokkala
,
V.-T.
, “
Effects of Strain Rate and Confining Pressure on the Compressive Behavior of Kuru Granite
,”
Int. J. Impact Eng.
, Vol. 
91
,
2016
, pp. 
183
193
, https://doi.org/10.1016/j.ijimpeng.2016.01.010
This content is only available via PDF.
You do not currently have access to this content.