Abstract

There is lack of standardized tests for specifically evaluating the resistance of concrete to sulfuric acid attack, which has caused great variability, for example, in terms of solution concentration, pH level/control, etc., among previous studies in this area. Accordingly, there are conflicting data about the role of key constituents of concrete (e.g., supplementary cementitious materials [SCMs]) and uncertainty about building codes’ stipulations for concrete exposed to sulfuric acid. Hence, the aim of this study was to assess the behavior of the same concretes, prepared with single and blended binders, to incremental levels (mild, severe, and very severe) of sulfuric acid solutions over 36 weeks. The test variables included the type of cement (general use [GU] or portland limestone cement [PLC]) and SCMs (fly ash, silica fume, and nanosilica). The severe (1 %, pH of 1) and very severe aggression (2.5 %, pH of 0.5) phases caused mass loss of all specimens, with the latter phase providing clear distinction among the performance of concrete mixtures. The results showed that the penetrability of concrete was not a controlling factor under severe and very severe damage by sulfuric acid attack, whereas the chemical vulnerability of the binder was the dominant factor. Mixtures prepared from the PLC performed better than those prepared from GU. While the quaternary mixtures that consisted of GU or PLC, fly ash, silica fume, and nanosilica showed the highest mass losses after 36 weeks, the binary mixtures incorporating GU or PLC with fly ash had the lowest mass losses.

References

1.
Attiogbe
,
E. K.
and
Rizkalla
,
S. H.
, “
Response of Concrete to Sulfuric Acid Attack
,”
ACI Mater. J.
, Vol. 
85
, No. 
6
,
1988
, pp. 
481
488
.
2.
Zivica
,
V.
and
Bajza
,
A.
, “
Acidic Attack of Cement Based Materials—A Review. Part 1. Principle of Acidic Attack
,”
Constr. Build. Mater.
, Vol. 
15
, No. 
8
,
2001
, pp. 
331
340
, https://doi.org/10.1016/S0950-0618(01)00012-5
3.
Kawai
,
K.
,
Yamaji
,
S.
, and
Shinmi
,
T.
, “
Concrete Deterioration Caused by Sulfuric Acid Attack
,” presented at the
International Conference on Durability of Building Materials and Components
,
Lyon, France
, April 17–20,
2005
.
4.
Fattuhi
,
N. I.
and
Hughes
,
B. P.
, “
Ordinary Portland Cement Mixes with Selected Admixtures Subjected to Sulfuric Acid Attack
,”
ACI Mater. J.
, Vol. 
85
, No. 
6
,
1988
, pp. 
512
518
.
5.
Hobbs
,
D. W.
and
Taylor
,
M. G.
, “
Nature of the Thaumasite Sulfate Attack Mechanism in Field Concrete
,”
Cem. Concr. Res.
, Vol. 
30
, No. 
4
,
2000
, pp. 
529
533
, https://doi.org/10.1016/S0008-8846(99)00255-0
6.
Parker
,
C. D.
, “
The Corrosion of Concrete 1. The Isolation of a Species of Bacterium Associated with the Corrosion of Concrete Exposed to Atmospheres Containing Hydrogen Sulphide
,”
Aust. J. Exp. Biol. Med. Sci.
, Vol. 
23
, No. 
2
,
1945
, pp. 
81
90
, https://doi.org/10.1038/icb.1945.13
7.
United States Congress “
The Budget and Economic Outlook: Fiscal Years 2009 to 2019
,” Publication No. 3187, Congressional Budget Office, Washington, DC,
2009
, 50p.
8.
Rabehi
,
B.
,
Ghernouti
,
Y.
, and
Driss
,
M
, “
Potential Use of Calcined Silt of Dam as a Pozzolan in Blended Portland Cement
,”
Int. J. Concr. Struct. Mater.
, Vol. 
8
, No. 
3
,
2014
, pp. 
259
268
, https://doi.org/10.1007/s40069-014-0072-5
9.
Rostami
,
V.
,
Shao
,
Y.
, and
Boyd
,
A. J.
, “
Durability of Concrete Pipes Subjected to Combined Steam and Carbonation Curing
,”
Constr. Build. Mater.
, Vol. 
25
, No. 
8
,
2011
, pp. 
3345
3355
, https://doi.org/10.1016/j.conbuildmat.2011.03.025
10.
Lotfy
,
A.
,
Hossain
,
K. M. A.
, and
Lachemi
,
M.
, “
Durability Properties of Lightweight Self-Consolidating Concrete Developed with Three Types of Aggregates
,”
Constr. Build. Mater.
, Vol. 
106
,
2016
, pp. 
43
54
, https://doi.org/10.1016/j.conbuildmat.2015.12.118
11.
Soroushian
,
P.
,
Chowdhury
,
H.
, and
Ghebrab
,
T.
, “
Evaluation of Water-Repelling Additives for Use in Concrete-Based Sanitary Sewer Infrastructure
,”
J. Infrastruct. Syst.
, Vol. 
15
, No. 
2
,
2009
, pp. 
106
110
, https://doi.org/10.1061/(ASCE)1076-0342(2009)15:2(106)
12.
ASTM C267-01(2012)
Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes
,
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
13.
Monteny
,
J.
,
Vincke
,
E.
,
Beeldens
,
A.
,
De Belie
,
N.
,
Taerwe
,
L.
,
Van Gemert
,
D.
, and
Verstraete
,
W.
, “
Chemical, Microbiological, and In Situ Test Methods for Biogenic Sulfuric Acid Corrosion of Concrete
,”
Cem. Concr. Res.
, Vol. 
30
, No. 
4
,
2000
, pp. 
623
634
, https://doi.org/10.1016/S0008-8846(00)00219-2
14.
Cohen
,
M. D.
and
Mather
,
B.
, “
Sulfate Attack on Concrete: Research Needs
,”
ACI Mater. J.
, Vol. 
88
, No. 
1
,
1991
, pp. 
62
69
.
15.
Durning
,
T. A.
and
Hicks
,
M. C.
, “
Using Microsilica to Increase Concrete’s Resistance to Aggressive Chemicals
,”
Concr. Int.
, Vol. 
13
, No. 
3
,
1991
, pp. 
42
48
.
16.
Mehta
,
P. K.
, “
Studies on Chemical Resistance of Low Water/Cement Ratio Concretes
,”
Cem. Concr. Res.
, Vol. 
15
, No. 
6
,
1985
, pp. 
969
978
, https://doi.org/10.1016/0008-8846(85)90087-0
17.
Hewayde
,
E.
,
Allouche
,
E. N.
, and
Nakhla
,
G. F.
, “
Experimental Investigations of the Effect of Selected Admixtures on the Resistance of Concrete to Sulfuric Acid Attack
,” presented at the
International Conference on Pipeline Engineering and Construction
, Baltimore, MD, July 13–16,
2003
,
American Society of Civil Engineers
,
Reston, VA
, pp. 
504
513
.
18.
Roy
,
D. M.
,
Arjunan
,
P.
, and
Silsbee
,
M. R.
, “
Effect of Silica Fume, Metakaolin, and Low-Calcium Fly Ash on Chemical Resistance of Concrete
,”
Cem. Concr. Res.
, Vol. 
31
, No. 
12
,
2001
, pp. 
1809
1813
, https://doi.org/10.1016/S0008-8846(01)00548-8
19.
Beddoe
,
R. E.
and
Dorner
,
H. W.
, “
Modelling Acid Attack on Concrete: Part I. The Essential Mechanisms
,”
Cem. Concr. Res.
, Vol. 
35
, No. 
12
,
2005
, pp. 
2333
2339
, https://doi.org/10.1016/j.cemconres.2005.04.002
20.
Monteny
,
J.
,
De Belie
,
N.
, and
Taerwe
,
L.
, “
Resistance of Different Types of Concrete Mixtures to Sulfuric Acid
,”
Mater. Struct.
, Vol. 
36
, No. 
4
,
2003
, pp. 
242
249
, https://doi.org/10.1007/BF02479618
21.
Torii
,
K.
and
Kawamura
,
M.
, “
Effects of Fly Ash and Silica Fume on the Resistance of Mortar to Sulfuric Acid and Sulfate Attack
,”
Cem. Concr. Res.
, Vol. 
24
, No. 
2
,
1994
, pp. 
361
370
, https://doi.org/10.1016/0008-8846(94)90063-9
22.
Chang
,
Z.-T.
,
Song
,
X.-J.
,
Munn
,
R.
, and
Marosszeky
,
M.
, “
Using Limestone Aggregates and Different Cements for Enhancing Resistance of Concrete to Sulphuric Acid Attack
,”
Cem. Concr. Res.
, Vol. 
35
, No. 
8
,
2005
, pp. 
1486
1494
, https://doi.org/10.1016/j.cemconres.2005.03.006
23.
Tamimi
,
A. K.
, “
High-Performance Concrete Mix for an Optimum Protection in Acidic Conditions
,”
Mater. Struct.
, Vol. 
30
, No. 
3
,
1997
, pp. 
188
191
, https://doi.org/10.1007/BF02486392
24.
Bassuoni
,
M. T.
and
Nehdi
,
M. L.
, “
Resistance of Self-Consolidating Concrete to Sulfuric Acid Attack with Consecutive pH Reduction
,”
Cem. Concr. Res.
, Vol. 
37
, No. 
7
,
2007
, pp. 
1070
1084
, https://doi.org/10.1016/j.cemconres.2007.04.014
25.
CSA A23.1-14/A23.2-14
Concrete Materials and Methods of Concrete Construction/Test Methods and Standard Practices for Concrete
,
Canadian Standards Association
,
Mississauga, Canada
,
2014
, www.scc.ca
26.
Building Research Establishment
BRE Special Digest 1, Concrete in Aggressive Ground
,
IHS BRE Press
,
London, UK
,
2005
, 68p.
27.
CSA A3001-13
Cementitious Materials Compendium
,
Canadian Standards Association
,
Mississauga, Canada
,
2013
, www.techstreet.com
28.
ASTM C494/C494M-15
Standard Specification for Chemical Admixtures for Concrete
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
29.
ASTM C192/C192M-16
Standard Practice for Making and Curing Concrete Test Specimens in The Laboratory
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
30.
BS EN 206-1:2000
Concrete. Specification, Performance, Production and Conformity
(Superseded),
British Standards Institution
,
London, UK
,
2000
, www.bsigroup.com
31.
ASTM C1202-12
Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
32.
Bassuoni
,
M. T.
,
Nehdi
,
M. L.
, and
Greenough
,
T. R.
, “
Enhancing the Reliability of Evaluating Chloride Ingress in Concrete Using the ASTM C 1202 Rapid Chloride Penetrability Test
,”
J. ASTM Int.
, Vol. 
3
, No. 
3
,
2006
, pp. 
1
13
, https://doi.org/10.1520/JAI13403
33.
ASTM C39/C39M-16
Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
34.
ASTM C496/C496M-11
Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2011
, www.astm.org
35.
Ramezanianpour
,
A. M.
and
Hooton
,
R. D.
, “
A Study on Hydration, Compressive Strength, and Porosity of Portland-Limestone Cement Mixes Containing SCMs
,”
Cem. Concr. Compos.
, Vol. 
51
,
2014
, pp. 
1
13
, https://doi.org/10.1016/j.cemconcomp.2014.03.006
36.
Celik
,
K.
,
Jackson
,
M. D.
,
Mancio
,
M.
,
Meral
,
C.
,
Emwas
,
A.-H.
,
Mehta
,
P. K.
, and
Monteiro
,
P. J. M.
, “
High-Volume Natural Volcanic Pozzolan and Limestone Powder as Partial Replacements for Portland Cement in Self-Compacting and Sustainable Concrete
,”
Cem. Concr. Compos.
, Vol. 
45
,
2014
, pp. 
136
147
, https://doi.org/10.1016/j.cemconcomp.2013.09.003
37.
Said
,
A. M.
,
Zeidan
,
M. S.
,
Bassuoni
,
M. T.
, and
Tian
,
Y.
, “
Properties of Concrete Incorporating Nano-silica
,”
Constr. Build. Mater.
, Vol. 
36
,
2012
, pp. 
838
844
, https://doi.org/10.1016/j.conbuildmat.2012.06.044
38.
De Belie
,
N.
,
Monteny
,
J.
,
Beeldens
,
A.
,
Vincke
,
E.
,
Van Gemert
,
D.
, and
Verstraete
,
W.
, “
Experimental Research and Prediction of the Effect of Chemical and Biogenic Sulfuric Acid on Different Types of Commercially Produced Concrete Sewer Pipes
,”
Cem. Concr. Res.
, Vol. 
34
, No. 
12
,
2004
, pp. 
2223
2236
, https://doi.org/10.1016/j.cemconres.2004.02.015
39.
Yuan
,
H.
,
Dangla
,
P.
,
Chatellier
,
P.
, and
Chaussadent
,
T.
, “
Degradation Modelling of Concrete Submitted to Sulfuric Acid Attack
,”
Cem. Concr. Res.
, Vol. 
53
,
2013
, pp. 
267
277
, https://doi.org/10.1016/j.cemconres.2013.08.002
40.
Beddoe
,
R. E.
, “
Modelling Acid Attack on Concrete: Part II. A Computer Model
,”
Cem. Concr. Res.
, Vol. 
88
,
2016
, pp. 
20
35
, https://doi.org/10.1016/j.cemconres.2015.10.012
41.
Scherer
,
G. W.
, “
Stress from Crystallization of Salt
,”
Cem. Concr. Res.
, Vol. 
34
, No. 
9
,
2004
, pp. 
1613
1624
, https://doi.org/10.1016/j.cemconres.2003.12.034
42.
Mehta
,
P. K.
and
Monteiro
,
P. J. M.
,
Concrete: Structure, Properties, and Materials
, 4th ed.,
McGraw-Hill Education
,
New York, NY
,
2013
, 704p.
43.
Kim
,
A. G.
,
Kazonich
,
G.
, and
Dahlberg
,
M.
, “
Relative Solubility of Cations in Class F Fly Ash
,”
Environ. Sci. Technol.
, Vol. 
37
, No. 
19
,
2003
, pp. 
4507
4511
, https://doi.org/10.1021/es0263691
44.
Hughes
,
B. P.
and
Guest
,
J. E.
, “
Limestone and Siliceous Aggregate Concretes Subjected to Sulphuric Acid Attack
,”
Mag. Concr. Res.
, Vol. 
30
, No. 
102
,
1978
, pp. 
11
18
, https://doi.org/10.1680/macr.1978.30.102.11
45.
Fattuhi
,
N. I.
and
Hughes
,
B. P.
, “
The Performance of Cement Paste and Concrete Subjected to Sulphuric Acid Attack
,”
Cem. Concr. Res.
, Vol. 
18
, No. 
4
,
1988
, pp. 
545
553
, https://doi.org/10.1016/0008-8846(88)90047-6
This content is only available via PDF.
You do not currently have access to this content.