Abstract

The principal objective of this work is to understand the effects of brittleness on crack behaviors in rock, rock-like materials, and the underlying fracturing mechanisms. Brittleness, as one of the critical parameters of rock, significantly affects mechanical properties and fracturing behaviors. A better understanding of the effects of the brittleness on fracturing behaviors can lead to a more satisfactory characterization and assessment of the overall behaviors and performances of rock mass. In this study, experiments on rock-like materials with two parallel preexisting flaws are conducted to study the effects of brittleness, as well as the mechanical properties, crack initiation modes, crack coalescence types, and ultimate failure modes, on cracking behaviors of rock-like materials. We find that the content of the adhesive material’s polyamide and epoxy have a significant effect on the brittleness of rock-like materials that consist of sand, barite, epoxy, polyamide, and alcohol at different mass ratios. The brittleness of specimens decreases with increasing content of the cementing agents epoxy and polyamide. Seven types of crack initiation—wing crack, antiwing crack, coplanar secondary crack, oblique secondary crack, out-of-plane tensile crack, out-of-plane shear crack, and far-field crack—are observed in high-speed images of the ultimate failure crack morphology. Four types of crack coalescence are also identified: tension coalescence mode, shear coalescence mode, and the mixed mode including tension-shear coalescence mode and tension-shear-tension coalescence mode. A primary observation was that the ultimate failure mode is a transition from tension failure mode to tension-shear failure mode and shear failure mode, in sequence, and the rupture angle increases gradually with decreasing brittleness. Finally, the effects of the brittleness on the mechanical properties of rock-like materials, including the complete axial stress-strain curves, crack initiation stress ratio, and residual stress, are investigated in detail.

References

1.
Sagong
,
M.
and
Bobet
,
A.
, “
Coalescence of Multiple Flaws in a Rock-Model Material in Uniaxial Compression
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
39
, No. 
2
,
2002
, pp. 
229
241
, https://doi.org/10.1016/S1365-1609(02)00027-8
2.
Martinez
,
A. R.
, “
Fracture Coalescence in Natural Rocks
,” M.Sc. thesis,
Massachusetts Institute of Technology
, Cambridge, MA,
1999
.
3.
Huang
,
J.
,
Chen
,
G.
,
Zhao
,
Y.
, and
Ren
,
W.
, “
An Experimental Study of the Strain Field Development Prior to Failure of a Marble Plate under Compression
,”
Tectonophysics
, Vol. 
175
, Nos. 
1–3
,
1990
, pp. 
269
284
, https://doi.org/10.1016/0040-1951(90)90142-U
4.
Li
,
Y.-P.
,
Chen
,
L.-Z.
, and
Wang
,
Y.-H.
, “
Experimental Research on Pre-Cracked Marble under Compression
,”
Int. J. Solids Struct.
, Vol. 
42
, Nos. 
9–10
,
2005
, pp. 
2505
2516
, https://doi.org/10.1016/j.ijsolstr.2004.09.033
5.
Petit
,
J.-P.
and
Barquins
,
M.
, “
Can Natural Faults Propagate under Mode II Conditions?
,”
Tectonics
, Vol. 
7
, No. 
6
,
1988
, pp. 
1243
1256
, https://doi.org/10.1029/TC007i006p01243
6.
Ingraffea
,
A. R.
and
Heuze
,
F. E.
, “
Finite Element Models for Rock Fracture Mechanics
,”
Int. J. Numer. Anal. Methods Geomech.
, Vol. 
4
, No. 
1
,
1980
, pp. 
25
43
, https://doi.org/10.1002/nag.1610040103
7.
Shen
,
B.
,
Stephansson
,
O.
,
Einstein
,
H. H.
, and
Ghahreman
,
B.
, “
Coalescence of Fractures under Shear Stresses in Experiments
,”
J. Geophys. Res.: Solid Earth
, Vol. 
100
, No. 
B4
,
1995
, pp. 
5975
5990
, https://doi.org/10.1029/95JB00040
8.
Bobet
,
A.
and
Einstein
,
H. H.
, “
Fracture Coalescence in Rock-Type Materials under Uniaxial and Biaxial Compression
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
35
, No. 
7
,
1998
, pp. 
863
888
, https://doi.org/10.1016/S0148-9062(98)00005-9
9.
Wong
,
R. H. C.
and
Chau
,
K. T.
, “
Crack Coalescence in a Rock-Like Material Containing Two Cracks
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
35
, No. 
2
,
1998
, pp. 
147
164
, https://doi.org/10.1016/S0148-9062(97)00303-3
10.
Wong
,
R. H. C.
,
Chau
,
K. T.
,
Tang
,
C. A.
, and
Lin
,
P.
, “
Analysis of Crack Coalescence in Rock-Like Materials Containing Three Flaws-Part I: Experimental Approach
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
38
, No. 
7
,
2001
, pp. 
909
924
, https://doi.org/10.1016/S1365-1609(01)00064-8
11.
Mughieda
,
O.
and
Alzo’ubi
,
A. K.
, “
Fracture Mechanisms of Offset Rock Joints-A Laboratory Investigation
,”
Geotech. Geol. Eng.
, Vol. 
22
, No. 
4
,
2004
, pp. 
545
562
, https://doi.org/10.1023/B:GEGE.0000047045.89857.06
12.
Lee
,
H.
and
Jeon
,
S.
, “
An Experimental and Numerical Study of Fracture Coalescence in Pre-Cracked Specimens under Uniaxial Compression
,”
Int. J. Solids Struct.
, Vol. 
48
, No. 
6
,
2011
, pp. 
979
999
, https://doi.org/10.1016/j.ijsolstr.2010.12.001
13.
Wong
,
L. N. Y.
and
Einstein
,
H. H.
, “
Crack Coalescence in Molded Gypsum and Carrara Marble: Part 1. Macroscopic Observations and Interpretation
,”
Rock Mech. Rock Eng.
, Vol. 
42
, No. 
3
,
2009
, pp. 
475
511
, https://doi.org/10.1007/s00603-008-0002-4
14.
Park
,
C. H.
and
Bobet
,
A.
, “
Crack Coalescence in Specimens with Open and Closed Flaws: A Comparison
,”
Int. J. Rock Mech. Min. Sci.
, Vol. 
46
, No. 
5
,
2009
, pp. 
819
829
, https://doi.org/10.1016/j.ijrmms.2009.02.006
15.
Wong
,
L. N. Y.
, “
Crack Coalescence in Molded Gypsum and Carrara Marble
,” Ph.D. thesis,
Massachusetts Institute of Technology
, Cambridge, MA,
2008
.
16.
Bombolakis
,
E. G.
, “
Photoelastic Study of Initial Stages of Brittle Fracture in Compression
,”
Tectonophysics
, Vol. 
6
, No. 
6
,
1968
, pp. 
461
473
, https://doi.org/10.1016/0040-1951(68)90072-3
17.
Hoek
,
E.
and
Bieniawski
,
Z. T.
, “
Brittle Fracture Propagation in Rock under Compression
,”
Int. J. Fract. Mech.
, Vol. 
1
, No. 
3
,
1965
, pp. 
137
155
, https://doi.org/10.1007/BF00186851
18.
Reyes
,
O.
and
Einstein
,
H. H.
, “
Failure Mechanisms of Fractured Rock - A Fracture Coalescence Model
,” presented at the
Seventh ISRM Congress
, Aachen, Germany, Sept. 16–20,
1991
,
International Society for Rock Mechanics and Rock Engineering
,
Lisbon, Portugal
, pp. 
333
340
.
19.
Shen
,
B.
, “
The Mechanism of Fracture Coalescence in Compression-Experimental Study and Numerical Simulation
,”
Eng. Fract. Mech.
, Vol. 
51
, No. 
1
,
1995
, pp. 
73
85
, https://doi.org/10.1016/0013-7944(94)00201-R
20.
Wong
,
L. N. Y.
and
Einstein
,
H. H.
, “
Crack Coalescence in Molded Gypsum and Carrara Marble: Part 2—Microscopic Observations and Interpretation
,”
Rock Mech. Rock Eng.
, Vol. 
42
, No. 
3
,
2009
, pp. 
513
545
, https://doi.org/10.1007/s00603-008-0003-3
21.
Zuo
,
B.-C.
,
Chen
,
C.-X.
,
Liu
,
C.-H.
,
Shen
,
Q.
,
Xiao
,
G.-F.
, and
Liu
,
X.-W.
, “
Research on Similar Material of Slope Simulation Experiment
,”
Rock and Soil Mech.
, Vol. 
25
, No. 
11
,
2004
, pp. 
1805
1808
.
22.
Gao
,
Q.
,
Tao
,
J.
,
Hu
,
J.
, and
Yu
,
X.
, “
Laboratory Study on the Mechanical Behaviors of an Anisotropic Shale Rock
,”
J. Rock Mech. Geotech. Eng.
, Vol. 
7
, No. 
2
,
2015
, pp. 
213
219
, https://doi.org/10.1016/j.jrmge.2015.03.003
23.
Sutton
,
M. A.
,
McNeill
,
S. R.
,
Helm
,
J. D.
, and
Chao
,
Y. J.
, “
Advances in Two-Dimensional and Three-Dimensional Computer Vision
,”
Top. Appl. Phys.
, Vol. 
77
, No. 
1
,
2000
, pp. 
323
372
.
24.
Griffith
,
A. A.
, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London
, Vol. 
221
, No. 
2
,
1920
, pp. 
163
198
.
25.
Bobet
,
A.
, “
The Initiation of Secondary Cracks in Compression
,”
Eng. Fract. Mech.
, Vol. 
66
, No. 
2
,
2000
, pp. 
187
219
, https://doi.org/10.1016/S0013-7944(00)00009-6
26.
Guo
,
Y.
,
Wong
,
R. H. C.
,
Zhu
,
W.
,
Chau
,
K. T.
, and
Li
,
S.
, “
Study on Fracture Pattern of Open Surface-Flaw in Gabbro
,”
J. Rock Mech. Eng.
, Vol. 
26
, No. 
3
,
2007
, pp. 
525
531
.
27.
Wang
,
Y.
,
Zhou
,
X.
, and
Xu
,
X.
, “
Numerical Simulation of Propagation and Coalescence of Flaws in Rock Materials under Compressive Loads Using the Extended Non-Ordinary State-Based Peridynamics
,”
Eng. Fract. Mech.
, Vol. 
163
, No. 
1
,
2016
, pp. 
248
273
, https://doi.org/10.1016/j.engfracmech.2016.06.013
28.
Meng
,
F.
,
Zhou
,
H.
,
Zhang
,
C.
,
Xu
,
R.
, and
Lu
,
J.
, “
Evaluation Methodology of Brittleness of Rock Based on Post-Peak Stress–Strain Curves
,”
Rock Mech. Rock Eng.
, Vol. 
48
, No. 
5
,
2015
, pp. 
1787
1805
, https://doi.org/10.1007/s00603-014-0694-6
29.
Hoagland
,
R. G.
,
Hahn
,
G. T.
, and
Rosenfield
,
A. R.
, “
Influence of Microstructure on Fracture Propagation in Rock
,”
Rock Mech.
, Vol. 
5
, No. 
2
,
1973
, pp. 
77
106
, https://doi.org/10.1007/BF01240160
30.
Dey
,
T. N.
and
Wang
,
C.-Y.
, “
Some Mechanisms of Microcrack Growth and Interaction in Compressive Rock Failure
,”
Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.
, Vol. 
18
, No. 
3
,
1981
, pp. 
199
209
, https://doi.org/10.1016/0148-9062(81)90974-8
31.
Du
,
Y.
and
Aydin
,
A.
, “
Interaction of Multiple Cracks and Formation of Echelon Crack Arrays
,”
Int. J. Numer. Anal. Methods Geomech.
, Vol. 
15
, No. 
3
,
1991
, pp. 
205
218
, https://doi.org/10.1002/nag.1610150305
32.
Horii
,
H.
and
Nemat-Nasser
,
S.
, “
Compression-Induced Microcrack Growth in Brittle Solids: Axial Splitting and Shear Failure
,”
J. Geophys. Res.
, Vol. 
90
, No. 
B4
,
1985
, pp. 
3105
3125
.
33.
Orowan
,
E.
, “
Fracture and Strength of Solids
,”
Rep. Prog. Phys.
, Vol. 
12
, No. 
1
,
1992
, pp. 
185
232
, https://doi.org/10.1088/0034-4885/12/1/309
34.
Vallejo
,
L. E.
, “
The Brittle and Ductile Behavior of Clay Samples Containing a Crack under Mixed Mode Loading
,”
Theor. Appl. Fract. Mech.
, Vol. 
10
, No. 
1
,
1988
, pp. 
73
78
, https://doi.org/10.1016/0167-8442(88)90058-4
This content is only available via PDF.
You do not currently have access to this content.