Abstract

The main purpose of this study is to investigate the effect of replacing natural aggregate with crumb rubber on the behavior of cement-stabilized crushed aggregate mixtures subjected to cyclic flexural loading. This behavior is evaluated in terms of fatigue life and resilient flexural modulus. The damage to the modified mixtures was also examined utilizing permanent deformation accumulation and degradation of resilient flexural modulus during a fatigue test. To ensure the same packing of aggregate mixture, the natural aggregate was replaced by waste tire rubber particles of similar gradation. Four volumetric replacement percentages (0 %, 15 %, 30 %, and 45 %) of the 6-mm fraction size were utilized. The results revealed that the inclusion of rubber improves the fatigue life of cement-stabilized aggregate mixtures and reduces the resilient flexural modulus. Damage investigation showed that the rubber has little effect on the degradability of the modulus during fatigue. However, more permanent deformation was accumulated after modification with crumb rubber. It was observed that the applied stress ratio affected the different phases of permanent deformation accumulation. It is suggested that the mechanism of fatigue improvement of rubberized mixtures occurs by delaying crack propagation and absorbing the energy during the microcracking stage.

References

1.
Farhan
,
A. H.
,
Dawson
,
A. R.
,
Thom
,
N. H.
,
Adam
,
S.
, and
Smith
,
M. J.
, “
Flexural Characteristics of Rubberized Cement-Stabilized Crushed Aggregate for Pavement Structure
,”
Mater. Des.
, Vol. 
88
,
2015
, pp. 
897
905
, https://doi.org/10.1016/j.matdes.2015.09.071
2.
Khatib
,
Z. K.
and
Bayomy
,
F. M.
, “
Rubberized Portland Cement Concrete
,”
J. Mater. Civ. Eng.
, Vol. 
11
, No. 
3
,
1999
, pp. 
206
213
, https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206)
3.
Güneyisi
,
E.
,
Gesoğlu
,
M.
, and
Özturan
,
T.
, “
Properties of Rubberized Concretes Containing Silica Fume
,”
Cem. Concr. Res.
, Vol. 
34
, No. 
12
,
2004
, pp. 
2309
2317
, https://doi.org/10.1016/j.cemconres.2004.04.005
4.
Zheng
,
L.
,
Huo
,
X. S.
, and
Yuan
,
Y.
, “
Strength, Modulus of Elasticity, and Brittleness Index of Rubberized Concrete
,”
J. Mater. Civ. Eng.
, Vol. 
20
, No. 
11
,
2008
, pp. 
692
699
, https://doi.org/10.1061/(ASCE)0899-1561(2008)20:11(692)
5.
Nguyen
,
T.-H.
,
Toumi
,
A.
, and
Turatsinze
,
A.
, “
Mechanical Properties of Steel Fibre Reinforced and Rubberised Cement-Based Mortars
,”
Mater. Des.
, Vol. 
31
, No. 
1
,
2010
, pp. 
641
647
, https://doi.org/10.1016/j.matdes.2009.05.006
6.
Eiras
,
J. N.
,
Segovia
,
F.
,
Borrachero
,
M. V.
,
Monzó
,
J.
,
Bonilla
,
M.
, and
Payá
,
J.
, “
Physical and Mechanical Properties of Foamed Portland Cement Composite Containing Crumb Rubber from Worn Tires
,”
Mater. Des.
, Vol. 
59
,
2014
, pp. 
550
557
, https://doi.org/10.1016/j.matdes.2014.03.021
7.
Topçu
,
İ. B.
and
Bilir
,
T.
, “
Experimental Investigation of Some Fresh and Hardened Properties of Rubberized Self-Compacting Concrete
,”
Mater. Des.
, Vol. 
30
, No. 
8
,
2009
, pp. 
3056
3065
, https://doi.org/10.1016/j.matdes.2008.12.011
8.
Cao
,
W.
, “
Study on Properties of Recycled Tire Rubber Modified Asphalt Mixtures Using Dry Process
,”
Constr. Build. Mater.
, Vol. 
21
, No. 
5
,
2007
, pp. 
1011
1015
, https://doi.org/10.1016/j.conbuildmat.2006.02.004
9.
Barišić
,
I.
,
Dimter
,
S.
, and
Rukavina
,
T.
, “
Strength Properties of Steel Slag Stabilized Mixes
,”
Composites Part B
, Vol. 
58
,
2014
, pp. 
386
391
, https://doi.org/10.1016/j.compositesb.2013.11.002
10.
Chiu
,
C.-T.
and
Lu
,
L.-C.
, “
A Laboratory Study on Stone Matrix Asphalt Using Ground Tire Rubber
,”
Constr. Build. Mater.
, Vol. 
21
, No. 
5
,
2007
, pp. 
1027
1033
, https://doi.org/10.1016/j.conbuildmat.2006.02.005
11.
Fontes
,
L. P. T. L.
,
Trichês
,
G.
,
Pais
,
J. C.
, and
Pereira
,
P. A. A.
, “
Evaluating Permanent Deformation in Asphalt Rubber Mixtures
,”
Constr. Build. Mater.
, Vol. 
24
, No. 
7
,
2010
, pp. 
1193
1200
, https://doi.org/10.1016/j.conbuildmat.2009.12.021
12.
Xiao
,
F.
,
Amirkhanian
,
S.
, and
Juang
,
C. H.
, “
Rutting Resistance of Rubberized Asphalt Concrete Pavements Containing Reclaimed Asphalt Pavement Mixtures
,”
J. Mater. Civ. Eng.
, Vol. 
19
, No. 
6
,
2007
, pp. 
475
483
, https://doi.org/10.1061/(ASCE)0899-1561(2007)19:6(475)
13.
Chiu
,
C.-T.
, “
Use of Ground Tire Rubber in Asphalt Pavements: Field Trial and Evaluation in Taiwan
,”
Resour. Conserv. Recycl.
, Vol. 
52
, No. 
3
,
2008
, pp. 
522
532
, https://doi.org/10.1016/j.resconrec.2007.06.006
14.
Applied Research Associates, Inc.
Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, NCHRP 1-37A
,
Transportation Research Board
,
Washington, DC
,
2004
, 311p.
15.
BS EN 933-1
Tests for Geometrical Properties of Aggregates, Determination of Particle Size Distribution, Sieving Method
,
British Standards Institution
,
London, UK
,
2012
, www.bsigroup.com
16.
Najim
,
K. B.
and
Hall
,
M. R.
, “
Mechanical and Dynamic Properties of Self-Compacting Crumb Rubber Modified Concrete
,”
Constr. Build. Mater.
, Vol. 
27
, No. 
1
,
2012
, pp. 
521
530
, https://doi.org/10.1016/j.conbuildmat.2011.07.013
17.
BS EN 197-1
Cement: Composition, Specifications and Conformity Criteria for Common Cements
,
British Standards Institution
,
London, UK
,
2000
, www.bsigroup.com
18.
BS EN 14227-1
Hydraulically Bound Mixtures, Part 1: Cement Bound Granular Mixtures
,
British Standards Institution
,
London, UK
,
2013
, www.bsigroup.com
19.
BS EN 13286-4
Unbound and Hydraulically Bound Mixtures, Part 4: Test Methods for Laboratory Reference Density and Water Content, Vibrating Hammer
,
British Standards Institution
,
London, UK
,
2003
, www.bsigroup.com
20.
Sobhan
,
K.
and
Mashnad
,
M.
, “
Fatigue Behavior of a Pavement Foundation with Recycled Aggregate and Waste HDPE Strips
,”
J. Geotech. Geoenviron. Eng.
, Vol. 
129
, No. 
7
,
2003
, pp. 
630
638
, https://doi.org/10.1061/(ASCE)1090-0241(2003)129:7(630)
21.
Rao Tangella
,
S. C. S.
,
Craus
,
J.
,
Deacon
,
J. A.
, and
Monismith
,
C. L.
,
Summary Report on Fatigue Response of Asphalt Mixtures, SHRP-A-312
,
Transportation Research Board
,
Washington, DC
,
1990
, 147p.
22.
Huang
,
Y. H.
,
Pavement Analysis and Design
, 2nd ed.,
Pearson
,
London, UK
,
2004
, 792p.
23.
Zeiada
,
W. A. M.
, “
Endurance Limit for HMA Based on Healing Phenomenon Using Viscoelastic Continuum Damage Analysis
,” Ph.D. thesis,
Arizona State University
, Tempe, AZ,
2012
.
24.
Sobhan
,
K.
and
Mashnad
,
M.
, “
Fatigue Durability of Stabilized Recycled Aggregate Base Course Containing Fly Ash and Waste-Plastic Strip Reinforcement
,” Final Report, Project 18,
Recycled Materials Resource Center, University of New Hampshire
,
Durham, NH
,
2000
, 55p.
25.
Li
,
N.
, “
Asphalt Mixture Fatigue Testing: Influence of Test Type and Specimen Size
,” Ph.D. thesis,
Delft University of Technology
, Delft, the Netherlands,
2013
.
26.
Sobhan
,
K.
, “
Stabilized Fiber-Reinforced Pavement Base Course with Recycled Aggregate
,” Ph.D. thesis,
Northwestern University
, Evanston, IL,
1997
.
27.
Sobhan
,
K.
and
Das
,
B. M.
, “
Durability of Soil-Cements Against Fatigue Fracture
,”
J. Mater. Civ. Eng.
, Vol. 
19
, No. 
1
,
2007
, pp. 
26
32
, https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(26)
28.
Khoury
,
N. N.
, “
Durability of Cementitiously Stabilized Aggregate Bases for Pavement Application
,” Ph.D. thesis,
University of Oklahama
, Norman, OK,
2005
.
29.
Grzybowski
,
M.
and
Meyer
,
C.
, “
Damage Accumulation in Concrete with and without Fiber Reinforcement
,”
ACI Mater. J.
, Vol. 
90
, No. 
6
,
1993
, pp. 
594
604
.
30.
Shah
,
S. P.
and
Chandra
,
S.
Fracture of Concrete Subjected to Cyclic and Sustained Loading
,”
ACI J. Proc.
, Vol. 
67
, No. 
10
,
1970
, pp. 
816
827
.
31.
de Oliveira
,
J. R. M.
, “
Grouted Macadam—Material Characterisation for Pavement Design
,” Ph.D. thesis,
University of Nottingham
, Nottingham, UK,
2006
.
32.
Paul
,
D.
, “
Characterisation of Lightly Stabilised Granular Materials by Various Laboratory Testing Methods
,” Ph.D. thesis,
University of New South Wales
, Sydney, Australia,
2012
.
33.
Farhan
,
A. H.
,
Dawson
,
A. R.
, and
Thom
,
N. H.
, “
Characterization of Rubberized Cement Bound Aggregate Mixtures Using Indirect Tensile Testing and Fractal Analysis
,”
Constr. Build. Mater.
, Vol. 
105
,
2016
, pp. 
94
102
, https://doi.org/10.1016/j.conbuildmat.2015.12.018
34.
Modarres
,
A.
and
Hosseini
,
Z.
, “
Mechanical Properties of Roller Compacted Concrete Containing Rice Husk Ash with Original and Recycled Asphalt Pavement Material
,”
Mater. Des.
, Vol. 
64
,
2014
, pp. 
227
236
, https://doi.org/10.1016/j.matdes.2014.07.072
35.
Carpenter
,
S. H.
,
Crovetti
,
M. R.
,
Smith
,
K. L.
,
Rmeili
,
E.
, and
Wilson
,
T.
,
Soil and Base Stabilization and Associated Drainage Considerations – Volume I, Pavement Design and Construction Considerations, FHWA-SA-93-004
,
Federal Highway Adminstration
,
Washington, DC
,
1992
, 136p.
36.
Villena
,
J.
,
Trichês
,
G.
, and
Prudêncio
,
L. R.
, Jr
., “
Replacing the Aggregate by Rice Husk Ash in Roller Compacted Concrete for Composite Pavements
,” presented at the
GeoHunan International Conference
, June 9–11,
2011
,
Hunan, China
, pp. 
19
27
, https://doi.org/10.1061/47623(402)3
37.
Sobhan
,
K.
and
Krizek
,
R. J.
, “
Fatigue Behavior of Fiber-Reinforced Recycled Aggregate Base Course
,”
J. Mater. Civ. Eng.
, Vol. 
11
, No. 
2
,
1999
, pp. 
124
130
, https://doi.org/10.1061/(ASCE)0899-1561(1999)11:2(124)
38.
Liu
,
Z.
and
Wang
,
X. D.
, “
Study on the Fatigue Test of Cement Bound Granular CBG-25
,”
J. Chin. Adv. Mater. Soc.
, Vol. 
2
, No. 
1
,
2014
, pp. 
53
69
, https://doi.org/10.1080/22243682.2014.894891
This content is only available via PDF.
You do not currently have access to this content.