Abstract

Concrete is one of the most recognized materials in civil infrastructure with a long history of applications, but its nonhomogeneous nature and complex multi-phase interactions across different dimensional scale levels have always presented a challenge for describing its behavior. In practice, it is assumed that the bulk material is approximately homogeneous while the behavior can be described using empirical models developed based on series of experimental tests. Over time, most of these experimental methods have been standardized, with most yielding a single-value parameter to define the overall response characteristic of the materials. However, the majority of these methods are not well suited to characterize local features, which often govern the failure characteristics of such brittle material. Recent advances in noncontact full-field measurement technologies, such as digital image correlation (DIC), have provided the opportunity to revisit this complex behavior and comprehensively characterize the behavior of concrete at specimen scale level. In this manuscript, 3D-DIC is used to evaluate the behavior of two conventional concrete mixes tested according to a series of ASTM standard tests. The experimental study consisted of a series of concrete tests including compression, modulus of elasticity, split tensile, and flexural tests. Results from this investigation demonstrated the suitability of the DIC technique for characterizing the full-field behavior of concrete subjected to various states of stresses and providing a mechanism to understand the linkage between local behavioral features and corresponding failure characteristics. Comparisons of experimental results to those obtained from theoretical predictions also highlighted the shortcomings associated with these existing theoretical approaches in describing the brittle nature of concrete. Results from this investigation provided a foundation for improving the current knowledge base regarding the behavioral features of conventional concrete materials and provides a framework for efficiently describing the behavior of the next generations of innovative high-performance cementitious composites.

References

1.
Asai
,
M.
,
Terada
,
K.
, and
Ikeda
,
K.
, “
Meso-scopic Concrete Analysis with a Lattice Model
,” presented at the
Fourth International Conference on Fracture Mechanics of Concrete and Concrete Structures
, Cachan, France, May 28–June 1,
2001
,
International Association of Fracture Mechanics for Concrete and Concrete Structures
, pp. 
757
764
.
2.
Cicekli
,
U.
,
Voyiadjis
,
G. Z.
, and
Al-Rub
,
R. K. A.
, “
A Plasticity and Anisotropic Damage Model for Plain Concrete
,”
Int. J. Plast.
, Vol. 
23
, Nos. 
10–11
,
2007
, pp. 
1874
1900
, https://doi.org/10.1016/j.ijplas.2007.03.006
3.
Erzar
,
B.
and
Forquin
,
P.
, “
Experiments and Mesoscopic Modelling of Dynamic Testing of Concrete
,”
Mech. Mater.
, Vol. 
43
, No. 
9
,
2011
, pp. 
505
527
, https://doi.org/10.1016/j.mechmat.2011.05.002
4.
Idiart
,
A. E.
,
López
,
C. M.
, and
Carol
,
I.
, “
Chemo-mechanical Analysis of Concrete Cracking and Degradation Due to External Sulfate Attack: A Meso-scale Model
,”
Cem. Concr. Compos.
, Vol. 
33
, No. 
3
,
2011
, pp. 
411
423
, https://doi.org/10.1016/j.cemconcomp.2010.12.001
5.
Kim
,
S.-M.
and
Al-Rub
,
R. K. A.
, “
Meso-scale Computational Modeling of the Plastic-Damage Response of Cementitious Composites
,”
Cem. Concr. Res.
, Vol. 
41
, No. 
3
,
2011
, pp. 
339
358
, https://doi.org/10.1016/j.cemconres.2010.12.002
6.
Maekawa
,
K.
,
Ishida
,
T.
, and
Kishi
,
T.
, “
Multi-scale Modeling of Concrete Performance
,”
J. Adv. Concr. Technol.
, Vol. 
1
, No. 
2
,
2003
, pp. 
91
126
, https://doi.org/10.3151/jact.1.91
7.
Mazars
,
J.
, “
A Description of Micro- and Macroscale Damage of Concrete Structures
,”
Eng. Fract. Mech.
, Vol. 
25
, Nos. 
5–6
,
1986
, pp. 
729
737
, https://doi.org/10.1016/0013-7944(86)90036-6
8.
Nguyen
,
V. P.
,
Stroeven
,
M.
, and
Sluys
,
L. J.
, “
Multiscale Failure Modeling of Concrete: Micromechanical Modeling, Discontinuous Homogenization and Parallel Computations
,”
Comput. Meth. Appl. Mech. Eng.
, Vols. 
201–204
,
2012
, pp. 
139
156
, https://doi.org/10.1016/j.cma.2011.09.014
9.
Voyiadjis
,
G. Z.
,
Taqieddin
,
Z. N.
, and
Kattan
,
P. I.
, “
Anisotropic Damage–Plasticity Model for Concrete
,”
Int. J. Plast.
, Vol. 
24
, No. 
10
,
2008
, pp. 
1946
1965
, https://doi.org/10.1016/j.ijplas.2008.04.002
10.
Wriggers
,
P.
and
Moftah
,
S. O.
, “
Mesoscale Models for Concrete: Homogenisation and Damage Behaviour
,”
Finite Elem. Anal. Des.
, Vol. 
42
, No. 
7
,
2006
, pp. 
623
636
, https://doi.org/10.1016/j.finel.2005.11.008
11.
Bažant
,
Z. P.
, “
Size Effect in Blunt Fracture: Concrete, Rock, Metal
,”
J. Eng. Mech.
, Vol. 
110
, No. 
4
,
1984
, pp. 
518
535
, https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)
12.
Bazant
,
Z. P.
and
Planas
,
J.
,
Fracture and Size Effect in Concrete and Other Quasibrittle Materials
,
CRC Press
,
Boca Raton, FL
,
1997
, 640p.
13.
ACI 363R-10
Report on High-Strength Concrete
,
American Concrete Institute
,
Farmington Hills, MI
,
2010
, www.techstreet.com
14.
Ahlborn
,
T. M.
,
Peuse
,
E. J.
, and
Misson
,
D. L.
,
Ultra-high Performance Concrete for Michigan Bridges Material Performance–Phase I
,
Michigan Department of Transportation
,
Lansing, MI
,
2008
, 181p.
15.
Hassan
,
A. M. T.
,
Jones
,
S. W.
, and
Mahmud
,
G. H.
, “
Experimental Test Methods to Determine the Uniaxial Tensile and Compressive Behaviour of Ultra High Performance Fibre Reinforced Concrete (UHPFRC)
,”
Const. Build. Mater.
, Vol. 
37
,
2012
, pp. 
874
882
, https://doi.org/10.1016/j.conbuildmat.2012.04.030
16.
Shuxin
,
W.
and
Victor
,
C. L.
, “
High-Early-Strength Engineered Cementitious Composites
,”
ACI Mater. J.
, Vol. 
103
, No. 
2
,
2006
, pp. 
97
105
.
17.
Sritharan
,
S.
, “
Design of UHPC Structural Members: Lessons Learned and ASTM Test Requirements
,”
Adv. Civ. Eng. Mater.
, Vol. 
4
, No. 
2
,
2015
, pp. 
113
131
, https://doi.org/10.1520/ACEM20140042
18.
Wille
,
K.
,
Naaman
,
A. E.
, and
Parra-Montesinos
,
G. J.
, “
Ultra-high Performance Concrete with Compressive Strength Exceeding 150 MPa (22 ksi): A Simpler Way
,”
ACI Mater. J.
, Vol. 
108
, No. 
1
,
2011
, pp. 
46
54
.
19.
ASTM International “
Cement Standards and Concrete Standards
,” ASTM International, https://perma.cc/5HBG-JM3N (accessed 28 Oct. 2017).
20.
CSA Group “
CSA Codes and Standards
,” CSA Group,
2017
, https://perma.cc/2XD9-XV22 (accessed 28 Oct. 2017).
21.
RILEM “
International Union of Laboratories and Experts in Construction Materials, Systems and Structures
,” RILEM, https://perma.cc/K5EB-JDBM (accessed 28 Oct. 2017).
22.
ASTM C39/C39M-14a
Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
(Superseded),
ASTM International
,
West Conshohocken, PA
, www.astm.org
23.
Graybeal
,
B.
, “
UHPC in the U.S. Highway Transportation System
,” presented at the
Second International Symposium on Ultra High Performance Concrete
, Kassel, Germany, March 5–7,
2008
,
Iowa State Unviersity
,
Ames, IA
, pp. 
11
17
.
24.
Steinberg
,
E.
, “
Structural Reliability of Prestressed UHPC Flexure Models for Bridge Girders
,”
J. Bridge Eng.
, Vol. 
15
, No. 
1
,
2010
, pp. 
65
72
, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000039
25.
Wipf
,
T. J.
,
Phares
,
B. M.
,
Sritharan
,
S.
,
Degen
,
B. E.
, and
Giesmann
,
M. T.
,
Design and Evaluation of a Single-Span Bridge Using Ultra-High Performance Concrete, Final Report
,
Iowa Department of Transportation
,
Ames, IA
,
2009
, 148p.
26.
Choi
,
S.
and
Shah
,
S. P.
, “
Measurement of Deformations on Concrete Subjected to Compression Using Image Correlation
,”
Exp. Mech.
, Vol. 
37
, No. 
3
,
1997
, pp. 
307
313
, https://doi.org/10.1007/BF02317423
27.
Jacobsen
,
S.
,
Marchand
,
J.
, and
Hornain
,
H.
, “
SEM Observations of the Microstructure of Frost Deteriorated and Self-Healed Concretes
,”
Cem. Concr. Res.
, Vol. 
25
, No. 
8
,
1995
, pp. 
1781
1790
, https://doi.org/10.1016/0008-8846(95)00174-3
28.
Clark
,
M. R.
,
McCann
,
D. M.
, and
Forde
,
M. C.
, “
Application of Infrared Thermography to the Non-destructive Testing of Concrete and Masonry Bridges
,”
NDT & E Int.
, Vol. 
36
, No. 
4
,
2003
, pp. 
265
275
, https://doi.org/10.1016/S0963-8695(02)00060-9
29.
Koehler
,
B.
,
Hentges
,
G.
, and
Mueller
,
W.
, “
Improvement of Ultrasonic Testing of Concrete by Combining Signal Conditioning Methods, Scanning Laser Vibrometer and Space Averaging Techniques
,”
NDT & E Int.
, Vol. 
31
, No. 
4
,
1998
, pp. 
281
287
, https://doi.org/10.1016/S0963-8695(98)00005-X
30.
Corr
,
D.
,
Accardi
,
M.
,
Graham-Brady
,
L.
, and
Shah
,
S.
, “
Digital Image Correlation Analysis of Interfacial Debonding Properties and Fracture Behavior in Concrete
,”
Eng. Fract. Mech.
, Vol. 
74
, Nos. 
1–2
,
2007
, pp. 
109
121
, https://doi.org/10.1016/j.engfracmech.2006.01.035
31.
Shah
,
S. G.
and
Chandra Kishen
,
J. M.
, “
Fracture Properties of Concrete–Concrete Interfaces Using Digital Image Correlation
,”
Exp. Mech.
, Vol. 
51
, No. 
3
,
2011
, pp. 
303
313
, https://doi.org/10.1007/s11340-010-9358-y
32.
Ferreira
,
M. D. C.
,
Venturini
,
W. S.
, and
Hild
,
F.
, “
On the Analysis of Notched Concrete Beams: From Measurement with Digital Image Correlation to Identification with Boundary Element Method of a Cohesive Model
,”
Eng. Fract. Mech.
, Vol. 
78
, No. 
1
,
2011
, pp. 
71
84
, https://doi.org/10.1016/j.engfracmech.2010.10.008
33.
Destrebecq
,
J.-F.
,
Toussaint
,
E.
, and
Ferrier
,
E.
, “
Analysis of Cracks and Deformations in a Full Scale Reinforced Concrete Beam Using a Digital Image Correlation Technique
,”
Exp. Mech.
, Vol. 
51
, No. 
6
,
2011
, pp. 
879
890
, https://doi.org/10.1007/s11340-010-9384-9
34.
Gheitasi
,
A.
,
Harris
,
D. K.
, and
Hansen
,
M. E.
, “
An Experimental-Computational Correlated Study for Describing the Failure Characteristics of Concrete across Two Scale Levels: Mixture and Structural Component
,”
Exp. Mech.
, Vol. 
58
, No. 
1
,
2018
, pp. 
11
32
, https://doi.org/10.1007/s11340-017-0319-6
35.
Bischoff
,
P. H.
and
Perry
,
S. H.
, “
Compressive Behaviour of Concrete at High Strain Rates
,”
Mater. Struct.
, Vol. 
24
, No. 
6
,
1991
, pp. 
425
450
, https://doi.org/10.1007/BF02472016
36.
Cuccovillo
,
T.
and
Coop
,
M. R.
, “
The Measurement of Local Axial Strains in Triaxial Tests Using LVDTs
,”
Géotechnique
, Vol. 
47
, No. 
1
,
1997
, pp. 
167
171
, https://doi.org/10.1680/geot.1997.47.1.167
37.
Neild
,
S. A.
,
Williams
,
M. S.
, and
McFadden
,
P. D.
, “
Development of a Vibrating Wire Strain Gauge for Measuring Small Strains in Concrete Beams
,”
Strain
, Vol. 
41
, No. 
1
,
2005
, pp. 
3
9
, https://doi.org/10.1111/j.1475-1305.2004.00163.x
38.
Gu
,
X.
,
Chen
,
Z.
, and
Ansari
,
F.
, “
Embedded Fiber Optic Crack Sensor for Reinforced Concrete Structures.
,”
ACI Struct. J.
, Vol. 
97
, No. 
3
,
2000
, pp. 
468
476
.
39.
Erzar
,
B.
and
Forquin
,
P.
, “
An Experimental Method to Determine the Tensile Strength of Concrete at High Rates of Strain
,”
Exp. Mech.
, Vol. 
50
, No. 
7
,
2010
, pp. 
941
955
, https://doi.org/10.1007/s11340-009-9284-z
40.
Merzbacher
,
C. I.
,
Kersey
,
A. D.
, and
Friebele
,
E. J.
, “
Fiber Optic Sensors in Concrete Structures: A Review
,”
Smart Mater. Struct.
, Vol. 
5
, No. 
2
,
1996
, pp. 
196
208
, https://doi.org/10.1088/0964-1726/5/2/008
41.
Wan
,
K. T.
and
Leung
,
C. K.
, “
Applications of a Distributed Fiber Optic Crack Sensor for Concrete Structures
,”
Sens. Actuators, A
, Vol. 
135
, No. 
2
,
2007
, pp. 
458
464
, https://doi.org/10.1016/j.sna.2006.09.004
42.
Zhang
,
Z.
and
Ansari
,
F.
, “
Fiber-Optic Laser Speckle-Intensity Crack Sensor for Embedment in Concrete
,”
Sens. Actuators, A
, Vol. 
126
, No. 
1
,
2006
, pp. 
107
111
, https://doi.org/10.1016/j.sna.2005.10.002
43.
Whiteman
,
T.
,
Lichti
,
D. D.
, and
Chandler
,
I.
, “
Measurement of Deflections in Concrete Beams by Close-Range Digital Photogrammetry
,” presented at the
Symposium on Geospatial Theory, Processing and Applications
,
Ottawa, Canada
, July 9–12,
2002
,
ISPRS Commission IV
, 9p.
44.
Maas
,
H.-G.
and
Hampel
,
U.
, “
Photogrammetric Techniques in Civil Engineering Material Testing and Structure Monitoring
,”
Photogramm. Eng. Remote Sens.
, Vol. 
72
, No. 
1
,
2006
, pp. 
39
45
, https://doi.org/10.14358/PERS.72.1.39
45.
Hampel
,
U.
and
Maas
,
H.-G.
, “
Application of Digital Photogrammetry for Measuring Deformation and Cracks during Load Tests in Civil Engineering Material Testing
,” presented at the
Sixth Conference on Optical 3-D Measurement Techniques
,
Zürich, Switzerland
,
2003
,
International Society for Photogrammetry and Remote Sensing
, pp. 
80
88
.
46.
Peddle
,
J.
,
Goudreau
,
A.
,
Carlson
,
E.
, and
Santini-Bell
,
E.
, “
Bridge Displacement Measurement through Digital Image Correlation
,”
Bridge Struct.
, Vol. 
7
, No. 
4
,
2011
, pp. 
165
173
.
47.
Yoneyama
,
S.
,
Kitagawa
,
A.
,
Iwata
,
S.
,
Tani
,
K.
, and
Hikuta
,
H.
, “
Bridge Deflection Measurement Using Digital Image Correlation
,”
Exp. Tech.
, Vol. 
31
, No. 
1
,
2007
, pp. 
34
40
, https://doi.org/10.1111/j.1747-1567.2006.00132.x
48.
Citto
,
C.
,
Wo
,
S. I.
,
Willam
,
K. J.
, and
Schuller
,
M. P.
, “
In-Place Evaluation of Masonry Shear Behavior Using Digital Image Analysis
,”
ACI Mater. J.
, Vol. 
108
, No. 
4
,
2011
, pp. 
413
422
.
49.
Lawler
,
J. S.
,
Keane
,
D. T.
, and
Shah
,
S. P.
, “
Measuring Three-Dimensional Damage in Concrete under Compression
,”
ACI Mater. J.
, Vol. 
98
, No. 
6
,
2001
, pp. 
465
475
.
50.
Xiao
,
J.
,
Li
,
W.
,
Sun
,
Z.
, and
Shah
,
S. P.
, “
Crack Propagation in Recycled Aggregate Concrete under Uniaxial Compressive Loading
,”
ACI Mater. J.
, Vol. 
109
, No. 
4
,
2012
, pp. 
451
462
.
51.
Ghrib
,
F.
,
El Ragaby
,
A.
,
Bougama
,
B.
,
Li
,
L.
, and
Memar
,
S.
, “
A Novel Technique for Displacement Measurements in RC Beams Using Digital Image Correlation
,”
ACI Spec. Publ.
, Vol. 
298
,
2014
, pp. 
1
16
.
52.
Murray
,
C.
,
Hoag
,
A.
,
Hoult
,
N. A.
, and
Take
,
W. A.
, “
Field Monitoring of a Bridge Using Digital Image Correlation
,”
Proc. Inst. Civ. Eng. Bridge Eng.
, Vol. 
168
, No. 
1
,
2015
, pp. 
3
12
, https://doi.org/10.1680/geng.13.00117
53.
Vaghefi
,
K.
,
Ahlborn
,
T. M.
,
Harris
,
D. K.
, and
Brooks
,
C. N.
, “
Combined Imaging Technologies for Concrete Bridge Deck Condition Assessment
,”
J. Perform. Constr. Facil.
, Vol. 
29
, No. 
4
,
2015
, 04014102, https://doi.org/10.1061/(ASCE)CF.1943-5509.0000465
54.
Vaghefi
,
K.
,
Oats
,
R. C.
,
Harris
,
D. K.
,
Ahlborn
,
T. M.
,
Brooks
,
C. N.
,
Endsley
,
K. A.
,
Roussi
,
C.
,
Shuchman
,
R.
,
Burns
,
J. W.
, and
Dobson
,
R.
, “
Evaluation of Commercially Available Remote Sensors for Highway Bridge Condition Assessment
,”
J. Bridge Eng.
, Vol. 
17
, No. 
6
,
2012
, pp. 
886
895
, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000303
55.
Lattanzi
,
D.
and
Miller
,
G. R.
, “
Robust Automated Concrete Damage Detection Algorithms for Field Applications
,”
J. Comput. Civil Eng.
, Vol. 
28
, No. 
2
,
2014
, pp. 
253
262
, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000257
56.
Sutton
,
M. A.
,
Orteu
,
J. J.
, and
Schreier
,
H.
,
Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications
,
Springer Science & Business Media
,
New York, NY
,
2009
, 322p.
57.
Butterfield
,
R.
,
Harkness
,
R. M.
, and
Andrews
,
K. Z.
, “
A Stero-photogrammetric Method for Measuring Displacement Fields
,”
Géotechnique
, Vol. 
20
, No. 
3
,
1970
, pp. 
308
314
, https://doi.org/10.1680/geot.1970.20.3.308
58.
Peters
,
W. H.
and
Ranson
,
W. F.
, “
Digital Imaging Techniques in Experimental Stress Analysis
,”
Opt. Eng.
, Vol. 
21
, No. 
3
,
1982
, 213427, https://doi.org/10.1117/12.7972925
59.
Sutton
,
M. A.
,
Wolters
,
W. J.
,
Peters
,
W. H.
,
Ranson
,
W. F.
, and
McNeill
,
S. R.
, “
Determination of Displacements Using an Improved Digital Correlation Method
,”
Image Vision Comput.
, Vol. 
1
, No. 
3
,
1983
, pp. 
133
139
, https://doi.org/10.1016/0262-8856(83)90064-1
60.
Crammond
,
G.
,
Boyd
,
S. W.
, and
Dulieu-Barton
,
J. M.
, “
Speckle Pattern Quality Assessment for Digital Image Correlation
,”
Opt. Lasers Eng.
, Vol. 
51
, No. 
12
,
2013
, pp. 
1368
1378
, https://doi.org/10.1016/j.optlaseng.2013.03.014
61.
Pan
,
B.
,
Xie
,
H.
, and
Wang
,
Z.
, “
Equivalence of Digital Image Correlation Criteria for Pattern Matching
,”
Appl. Opt.
, Vol. 
49
, No. 
28
,
2010
, pp. 
5501
5509
, https://doi.org/10.1364/AO.49.005501
62.
Tong
,
W.
, “
An Evaluation of Digital Image Correlation Criteria for Strain Mapping Applications
,”
Strain
, Vol. 
41
, No. 
4
,
2005
, pp. 
167
175
, https://doi.org/10.1111/j.1475-1305.2005.00227.x
63.
Hoult
,
N. A.
,
Take
,
W. A.
,
Lee
,
C.
, and
Dutton
,
M.
, “
Experimental Accuracy of Two Dimensional Strain Measurements Using Digital Image Correlation
,”
Eng. Struct.
, Vol. 
46
,
2013
, pp. 
718
726
, https://doi.org/10.1016/j.engstruct.2012.08.018
64.
Torrenti
,
J. M.
,
Desrues
,
J.
,
Benaija
,
E. H.
, and
Boulay
,
C.
, “
Stereophotogrammetry and Localization in Concrete under Compression
,”
J. Eng. Mech.
, Vol. 
117
, No. 
7
,
1991
, pp. 
1455
1465
, https://doi.org/10.1061/(ASCE)0733-9399(1991)117:7(1455)
65.
Alam
,
S. Y.
,
Loukili
,
A.
, and
Grondin
,
F.
, “
Monitoring Size Effect on Crack Opening in Concrete by Digital Image Correlation
,”
Eur. J. Environ. Civ. Eng.
, Vol. 
16
, No. 
7
,
2012
, pp. 
818
836
, https://doi.org/10.1080/19648189.2012.672211
66.
Skarżyński
,
Ł.
and
Tejchman
,
J.
, “
Experimental Investigations of Fracture Process Using DIC in Plain and Reinforced Concrete Beams under Bending
,”
Strain
, Vol. 
49
, No. 
6
,
2013
, pp. 
521
543
, https://doi.org/10.1111/str.12064
67.
Wu
,
Z.
,
Rong
,
H.
,
Zheng
,
J.
,
Xu
,
F.
, and
Dong
,
W.
, “
An Experimental Investigation on the FPZ Properties in Concrete Using Digital Image Correlation Technique
,”
Eng. Fract. Mech.
, Vol. 
78
, No. 
17
,
2011
, pp. 
2978
2990
, https://doi.org/10.1016/j.engfracmech.2011.08.016
68.
ASTM C138/C138M-14
Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
69.
ASTM C143/C143M-12
Standard Test Method for Slump of Hydraulic-Cement Concrete
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
70.
ASTM C231/C231M-14
Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method
(Superseded),
ASTM International
West Conshohocken, PA
,
2014
, www.astm.org
71.
ASTM C469/C469M-14
Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression
,
ASTM International
,
West Conshohocken, PA
,
2014
, www.astm.org
72.
ASTM C496/C496M-11
Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2011
, www.astm.org
73.
Correlated Solutions Inc.,
Vic-3D Software and Reference Manual
,
Correlated Solutions Inc.
,
Irmo, SC
,
2015
.
74.
Barranger
,
Y.
,
Doumalin
,
P.
,
Dupré
,
J. C.
, and
Germaneau
,
A.
, “
Digital Image Correlation Accuracy: Influence of Kind of Speckle and Recording Setup
,” presented at the
14th International Conference on Experimental Mechanics
,
Poitiers, France
, July 4–9,
2010
,
European Association for Experimental Mechanics
, 7p.
75.
Pan
,
B.
,
Xie
,
H.
,
Wang
,
Z.
,
Qian
,
K.
, and
Wang
,
Z.
, “
Study on Subset Size Selection in Digital Image Correlation for Speckle Patterns
,”
Opt. Express
, Vol. 
16
, No. 
10
,
2008
, pp. 
7037
7048
.
76.
Hua
,
T.
,
Xie
,
H.
,
Wang
,
S.
,
Hu
,
Z.
,
Chen
,
P.
, and
Zhang
,
Q.
, “
Evaluation of the Quality of a Speckle Pattern in the Digital Image Correlation Method by Mean Subset Fluctuation
,”
Opt. Laser Technol.
, Vol. 
43
, No. 
1
,
2011
, pp. 
9
13
, https://doi.org/10.1016/j.optlastec.2010.04.010
77.
Lecompte
,
D.
,
Bossuyt
,
S.
,
Cooreman
,
S.
,
Sol
,
H.
, and
Vantomme
,
J.
, “
Study and Generation of Optimal Speckle Patterns for DIC
,” presented at the
Experimental Mechanics Annual Conference and Exposition on Experimental and Applied Mechanics
, Springfield, MA, June 3–6,
2007
,
Society for Experimental Mechanics
,
Bethel, CT
, 8p.
78.
Lecompte
,
D.
,
Smits
,
A.
,
Bossuyt
,
S.
,
Sol
,
H.
,
Vantomme
,
J.
,
Van Hemelrijck
,
D.
, and
Habraken
,
A. M.
, “
Quality Assessment of Speckle Patterns for Digital Image Correlation
,”
Opt. Lasers Eng.
, Vol. 
44
, No. 
11
,
2006
, pp. 
1132
1145
, https://doi.org/10.1016/j.optlaseng.2005.10.004
79.
Pan
,
B.
,
Qian
,
K.
,
Xie
,
H.
, and
Asundi
,
A.
, “
On Errors of Digital Image Correlation Due to Speckle Patterns
,” presented at the
International Conference on Experimental Mechanics
, Nanjing, China, Nov. 8–11,
2008
,
International Society for Optics and Photonics
,
Bellingham, WA
, 7p.
80.
Su
,
Y.
,
Zhang
,
Q.
,
Xu
,
X.
, and
Gao
,
Z.
, “
Quality Assessment of Speckle Patterns for DIC by Consideration of Both Systematic Errors and Random Errors
,”
Opt. Lasers Eng.
, Vol. 
86
,
2016
, pp. 
132
142
.
81.
Reu
,
P.
, “
All about Speckles: Contrast
,”
Exp. Tech.
, Vol. 
39
, No. 
1
,
2015
, pp. 
1
2
, https://doi.org/10.1111/ext.12126
82.
Safavizadeh
,
S. A.
,
Wargo
,
A. D.
, and
Kim
,
Y. R.
, “
Utilizing Digital Image Correlation (DIC) in Asphalt Pavement Testing
,”
J. Test. Eval.
, Vol. 
46
, No. 
3
,
2018
, pp. 
984
998
, https://doi.org/10.1520/JTE20160262
83.
Yaofeng
,
S.
and
Pang
,
J. H. L.
, “
Study of Optimal Subset Size in Digital Image Correlation of Speckle Pattern Images
,”
Opt. Lasers Eng.
, Vol. 
45
, No. 
9
,
2007
, pp. 
967
974
, https://doi.org/10.1016/j.optlaseng.2007.01.012
84.
Lamond
,
J. F.
and
Pielert
,
J. H.
Eds.,
Significance of Tests and Properties of Concrete and Concrete-Making Materials, ASTM STP169D
,
ASTM International
,
West Conshohocken, PA
,
2006
, 655p., https://doi.org/10.1520/STP169D-EB
85.
Moës
,
N.
and
Belytschko
,
T.
, “
Extended Finite Element Method for Cohesive Crack Growth
,”
Eng. Fract. Mech.
, Vol. 
69
, No. 
7
,
2002
, pp. 
813
833
, https://doi.org/10.1016/S0013-7944(01)00128-X
86.
ACI 318-11
Building Code Requirements for Structural Concrete and Commentary
,
American Concrete Institute
, Farmington Hills, MI,
2011
, www.concrete.org
87.
Mehta
,
P. K.
and
Monteiro
,
P. J. M.
, “
Concrete: Microstructure, Properties, and Materials
,”
McGraw-Hill Education
, New York, NY,
2006
, 659p.
88.
Aríoglu
,
N.
,
Girgin
,
Z. C.
, and
Arioglu
,
E.
, “
Evaluation of Ratio between Splitting Tensile Strength and Compressive Strength for Concretes up to 120 MPa and Its Application in Strength Criterion
,”
ACI Mater. J.
, Vol. 
103
, No. 
1
,
2006
, pp. 
18
24
.
89.
Sutton
,
M. A.
,
Turner
,
J. L.
,
Bruch
,
H. A.
, and
Chae
,
T. A.
, “
Full-Field Representation of Discretely Sampled Surface Deformation for Displacement and Strain Analysis
,”
Exp. Mech.
, Vol. 
31
, No. 
2
,
1991
, pp. 
168
177
, https://doi.org/10.1007/BF02327571
90.
Sutton
,
M. A.
, “
Digital Image Correlation for Shape and Deformation Measurements
,”
Springer Handbook of Experimental Solid Mechanics
,
Springer
, Boston, MA,
2008
, pp. 
565
600
.
This content is only available via PDF.
You do not currently have access to this content.