Abstract

A copper microscratch test was carried out with a spherical indenter under constant normal load of 150 mN. The effect of sample tilt on the measurement of friction coefficient was investigated by rotating the sample with surface inclination between successive tests so that the indenter could experience different surface height slopes. It was found that the experimentally measured friction coefficients linearly depended on surface height slope (or surface tilt angle) under small angle tilt and became larger when the indenter climbed over the sample surface, which was explained by a geometrical intersection model. Accurate determination of the friction coefficient requires either two scratch tests with reversed sliding directions or 180° rotation of the sample with the average value being used as the coefficient of friction under nontilting condition. The true friction angle for the condition without surface inclination can be obtained by summing the experimentally measured friction angle and surface tilt angle.

References

1.
Z. M.
 
Hu
and
T. A.
 
Dean
, “
A Study of Surface Topography, Friction and Lubricants in Metalforming
,”
International Journal of Machine Tools and Manufacture
40
, no. 
11
(September
2000
):
1637
1649
,
2.
H.
 
Zhang
,
Y.
 
Takeuchi
,
W. W. F.
 
Chong
,
Y.
 
Mitsuya
,
K.
 
Fukuzawa
, and
S.
 
Itoh
, “
Simultaneous In Situ Measurements of Contact Behavior and Friction to Understand the Mechanism of Lubrication with Nanometer-Thick Liquid Lubricant Films
,”
Tribology International
127
(November
2018
):
138
146
,
3.
C.
 
Zhou
,
B.
 
Hu
,
X.
 
Qian
, and
X.
 
Han
, “
A Novel Prediction Method for Gear Friction Coefficients Based on a Computational Inverse Technique
,”
Tribology International
127
(November
2018
):
200
208
,
4.
J.
 
Wang
,
L.
 
Ma
,
W.
 
Li
, and
Z.
 
Zhou
, “
Influence of Different Lubricating Fluids on Friction Trauma of Small Intestine during Enteroscopy
,”
Tribology International
126
(October
2018
):
29
38
,
5.
C.
 
Liu
,
Z.
 
Man
,
F.
 
Zhou
,
K.
 
Chen
, and
H.
 
Yu
, “
The Wear and Friction Characters of Polycrystalline Diamond under Wetting Conditions
,”
Journal of Tribology
141
, no. 
2
(November
2019
):
021607
,
6.
S. S.
 
Alakhramsing
,
M. B.
 
de Rooij
,
A.
 
Akchurin
,
D. J.
 
Schipper
, and
M.
 
van Drogen
, “
A Mixed-TEHL Analysis of Cam-Roller Contacts Considering Roller Slip: On the Influence of Roller-Pin Contact Friction
,”
Journal of Tribology
141
, no. 
1
(August
2019
):
011503
,
7.
M. K.
 
Ahmed Ali
,
H.
 
Xianjun
,
F. A.
 
Essa
,
M. A. A.
 
Abdelkareem
,
A.
 
Elagouz
, and
S. W.
 
Sharshir
, “
Friction and Wear Reduction Mechanisms of the Reciprocating Contact Interfaces Using Nanolubricant under Different Loads and Speeds
,”
Journal of Tribology
140
, no. 
5
(April
2018
):
051606
,
8.
S.
 
Jeon
,
T.
 
Thundat
, and
Y.
 
Braiman
, “
Effect of Normal Vibration on Friction in the Atomic Force Microscopy Experiment
,”
Applied Physics Letters
88
, no. 
21
(April
2006
):
214102
,
9.
D.
 
Li
,
Y.
 
Liu
,
Y.
 
Deng
,
M.
 
Fang
, and
D.
 
Wu
, “
The Effect of Different Temperatures on Friction and Wear Properties of CFRPEEK against AlSi 431 Steel under Water Lubrication
,”
Tribology Transactions
61
, no. 
2
(June
2017
):
357
366
,
10.
P.
 
Saravanan
,
R.
 
Selyanchyn
,
M.
 
Watanabe
,
S.
 
Fujikawa
,
H.
 
Tanaka
,
S. M.
 
Lyth
, and
J.
 
Sugimura
, “
Ultra-Low Friction of Polyethylenimine / Molybdenum Disulfide (PEI/MoS2)15 Thin Films in Dry Nitrogen Atmosphere and the Effect of Heat Treatment
,”
Tribology International
127
(November
2018
):
255
263
,
11.
B.
 
Feng
, “
Tribology Behavior on Scratch Tests: Effects of Yield Strength
,”
Friction
5
, no. 
1
(March
2017
):
108
114
,
12.
A.
 
Kumar
,
T.
 
Staedler
, and
X.
 
Jiang
, “
Effect of Normal Load and Roughness on the Nanoscale Friction Coefficient in the Elastic and Plastic Contact Regime
,”
Beilstein Journal of Nanotechnology
4
(
2013
):
66
71
,
13.
B.
 
Bhushan
and
A. V.
 
Kulkarni
, “
Effect of Normal Load on Microscale Friction Measurements
,”
Thin Solid Films
278
, nos. 
1–2
(May
1996
):
49
56
,
14.
N. B.
 
Dube
and
I. M.
 
Hutchings
, “
Influence of Particle Fracture in the High-Stress and Low-Stress Abrasive Wear of Steel
,”
Wear
233–235
(December
1999
):
246
256
,
15.
S. M.
 
Nahvi
,
P. H.
 
Shipway
, and
D. G.
 
McCartney
, “
Particle Motion and Modes of Wear in the Dry Sand–Rubber Wheel Abrasion Test
,”
Wear
267
, no. 
11
(October
2009
):
2083
2091
,
16.
A. N. J.
 
Stevenson
and
I. M.
 
Hutchings
, “
Development of the Dry Sand/Rubber Wheel Abrasion Test
,”
Wear
195
, nos. 
1–2
(July
1996
):
232
240
,
17.
N.
 
Salah
,
M. S.
 
Abdel-wahab
,
S. S.
 
Habib
, and
Z. H.
 
Khan
, “
Lubricant Additives Based on Carbon Nanotubes Produced from Carbon-Rich Fly Ash
,”
Tribology Transactions
60
, no. 
1
(
2016
):
166
175
,
18.
P.
 
Riehm
,
H.-J.
 
Unrau
, and
F.
 
Gauterin
, “
A Model Based Method to Determine Rubber Friction Data Based on Rubber Sample Measurements
,”
Tribology International
127
(November
2018
):
37
46
,
19.
F.
 
Yoshizumi
,
H.
 
Tani
, and
S.
 
Sanda
, “
Simulation of the Friction Coefficient of Paper-Based Wet Clutch with Wavy Separators
,”
Journal of Tribology
141
, no. 
1
(August
2019
):
011702
,
20.
J. F.
 
Archard
and
T. E.
 
Allibone
, “
Elastic Deformation and the Laws of Friction
,”
Proceedings of the Royal Society A
243
, no. 
1233
(December
1957
):
190
205
.
21.
F.
 
Gong
and
B.
 
Guo
, “
Effects of Influencing Factors on Friction Coefficient in Microsheet Forming
,”
Materials Research Innovations
17
, sup. 1 (
2014
):
7
11
,
22.
M.
 
Xu
,
L.
 
Li
,
M.
 
Wang
, and
B.
 
Luo
, “
Effects of Surface Roughness and Wood Grain on the Friction Coefficient of Wooden Materials for Wood–Wood Frictional Pair
,”
Tribology Transactions
57
, no. 
5
(
2014
):
871
878
,
23.
L.
 
Han
,
D.-W.
 
Zhang
, and
F.-J.
 
Wang
, “
Predicting Film Parameter and Friction Coefficient for Helical Gears Considering Surface Roughness and Load Variation
,”
Tribology Transactions
56
, no. 
1
(
2013
):
49
57
,
24.
P. L.
 
Menezes
,
Kishore
, and
S. V.
 
Kailas
, “
Effect of Surface Topography on Friction and Transfer Layer during Sliding
,”
Tribology Online
3
, no. 
1
(
2008
):
25
30
,
25.
P. L.
 
Menezes
,
Kishore
,
S. V.
 
Kailas
, and
M.S.
 
Bobji
, “
Influence of Tilt Angle of Plate on Friction and Transfer Layer—A Study of Aluminium Pin Sliding against Steel Plate
,”
Tribology International
43
, nos. 
5–6
(May–June
2010
):
897
905
,
26.
H. E.
 
Staph
,
P. M.
 
Ku
, and
H. J.
 
Carper
, “
Effect of Surface Roughness and Surface Texture on Scuffing
,”
Mechanism and Machine Theory
8
, no. 
2
(
1973
):
197
208
,
27.
R.
 
Lakshmipathy
and
R.
 
Sagar
, “
Effect of Die Surface Topography on Die-Work Interfacial Friction in Open Die Forging
,”
International Journal of Machine Tools & Manufacture
32
, no. 
5
(October
1992
):
685
693
,
28.
P. L.
 
Menezes
,
Kishore
, and
S. V.
 
Kailas
, “
Effect of Roughness Parameter and Grinding Angle on Coefficient of Friction when Sliding of Al–Mg Alloy over EN8 Steel
,”
Journal of Tribology
128
, no. 
4
(
2006
):
697
704
,
29.
P. L.
 
Menezes
,
Kishore
, and
S. V.
 
Kailas
, “
Studies on Friction and Transfer Layer Using Inclined Scratch
,”
Tribology International
39
, no. 
2
(February
2006
):
175
183
,
30.
A.
 
Määttä
,
P.
 
Vuoristo
, and
T.
 
Mäntylä
, “
Friction and Adhesion of Stainless Steel Strip against Tool Steels in Unlubricated Sliding with High Contact Load
,”
Tribology International
34
, no. 
11
(November
2001
):
779
786
,
31.
S.
 
Malayappan
and
R.
 
Narayanasamy
, “
An Experimental Analysis of Upset Forging of Aluminium Cylindrical Billets Considering the Dissimilar Frictional Conditions at Flat Die Surfaces
,”
International Journal of Advanced Manufacturing Technology
23
, nos. 
9–10
(May
2004
):
636
643
,
32.
M.
 
Wakuda
,
Y.
 
Yamauchi
,
S.
 
Kanzaki
, and
Y.
 
Yasuda
, “
Effect of Surface Texturing on Friction Reduction between Ceramic and Steel Materials under Lubricated Sliding Contact
,”
Wear
254
, nos. 
3–4
(February
2003
):
356
363
,
33.
K.
 
Tripathi
,
G.
 
Gyawali
,
A.
 
Amanov
, and
S. W.
 
Lee
, “
Synergy Effect of Ultrasonic Nanocrystalline Surface Modification and Laser Surface Texturing on Friction and Wear Behavior of Graphite Cast Iron
,”
Tribology Transactions
60
, no.
2
(
2016
):
226
237
,
34.
N. J.
 
Seo
and
T. J.
 
Armstrong
, “
Friction Coefficients in a Longitudinal Direction between the Finger Pad and Selected Materials for Different Normal Forces and Curvatures
,”
Ergonomics
52
, no. 
5
(May
2009
):
609
616
,
35.
K.
 
Kato
, “
Wear in Relation to Friction—A Review
,”
Wear
241
, no. 
2
(
2000
):
151
157
,
36.
Z.
 
Rymuza
, “
Energy Concept of the Coefficient of Friction
,”
Wear
199
, no. 
2
(November
1996
):
187
196
,
37.
M. A.
 
Moore
and
F. S.
 
King
, “
Abrasive Wear of Brittle Solids
,”
Wear
60
, no. 
1
(
1980
):
123
140
,
38.
F.
 
Hartung
,
R.
 
Kienle
,
T.
 
Götz
,
T.
 
Winkler
,
W.
 
Ressel
,
L.
 
Eckstein
, and
M.
 
Kaliske
, “
Numerical Determination of Hysteresis Friction on Different Length Scales and Comparison to Experiments
,”
Tribology International
127
(November
2018
):
165
176
,
39.
R. C.
 
Cozza
, “
Influence of the Normal Force, Abrasive Slurry Concentration and Abrasive Wear Modes on the Coefficient of Friction in Ball-Cratering Wear Tests
,”
Tribology International
70
(February
2014
):
52–62
,
40.
K.
 
Hiratsuka
,
A.
 
Enomoto
, and
T.
 
Sasada
, “
Friction and Wear of Al2O3, ZrO2 and SiO2 Rubbed against Pure Metals
,”
Wear
153
, no. 
2
(April
1992
):
361
373
,
41.
M. O. A.
 
Mokhtar
,
M.
 
Zaki
, and
G. S. A.
 
Shawki
, “
Correlation between the Frictional Behaviour and the Physical Properties of Metals
,”
Wear
65
, no. 
1
(
1980
):
29
34
,
42.
E.-S.
 
Yoon
,
H.
 
Kong
,
O.-K.
 
Kwon
, and
J.-E.
 
Oh
, “
Evaluation of Frictional Characteristics for a Pin-on-Disk Apparatus with Different Dynamic Parameters
,”
Wear
203–204
(March
1997
):
341
349
,
43.
Y.
 
Liu
,
W.
 
Wang
,
H.
 
Zhang
, and
Z.
 
Zhao
, “
Solution of Temperature Distribution under Frictional Heating with Consideration of Material Inhomogeneity
,”
Tribology International
126
(October
2018
):
80
96
,
44.
P.
 
Udaykant Jadav
,
R.
 
Amali
, and
O. B.
 
Adetoro
, “
Analytical Friction Model for Sliding Bodies with Coupled Longitudinal and Transverse Vibration
,”
Tribology International
126
(
2018
):
240
248
,
45.
S.
 
Lafaye
,
C.
 
Gauthier
, and
R.
 
Schirrer
, “
The Ploughing Friction: Analytical Model with Elastic Recovery for a Conical Tip with a Blunted Spherical Extremity
,”
Tribology Letters
21
, no. 
2
(February
2006
):
95
99
,
46.
A. A.
 
Thakre
and
A. K.
 
Singh
, “
Frictional Study of the Soft and Hard Solid Interface Using Response Surface Methodology
,”
Journal of Tribology
140
, no. 
4
(February
2018
):
041601
,
47.
J.
 
Zhan
and
M.
 
Fard
, “
Effects of Helix Angle, Mechanical Errors, and Coefficient of Friction on the Time-Varying Tooth-Root Stress of Helical Gears
,”
Measurement
118
(March
2018
):
135
146
,
48.
C. S.
 
Liu
,
Z. Y.
 
Zheng
,
D. W.
 
Wu
,
M. S.
 
Ye
,
P.
 
Gao
,
Y. G.
 
Peng
, and
X. J.
 
Fan
, “
Sliding Friction and Wear Properties of CNX/TiN Composite Films
,”
Tribology International
37
, no. 
9
(September
2004
):
721
725
,
49.
I.
 
Iliuc
, “
Wear and Micropitting of Steel Ball Sliding against TiN Coated Steel Plate in Dry and Lubricated Conditions
,”
Tribology International
39
, no. 
7
(July
2006
):
607
615
,
50.
L.
 
Ceschini
,
G.
 
Palombarini
,
G.
 
Sambogna
,
D.
 
Firrao
,
G.
 
Scavino
, and
G.
 
Ubertalli
, “
Friction and Wear Behaviour of Sintered Steels Submitted to Sliding and Abrasion Tests
,”
Tribology International
39
, no. 
8
(August
2006
):
748
755
,
51.
D.
 
Jianxin
,
L.
 
Jianhua
,
Z.
 
Jinlong
,
S.
 
Wenlong
, and
N.
 
Ming
, “
Friction and Wear Behaviors of the PVD ZrN Coated Carbide in Sliding Wear Tests and in Machining Processes
,”
Wear
264
, nos. 
3–4
(February
2008
):
298
307
,
52.
X.
 
Zhang
,
Z.
 
Li
, and
J.
 
Wang
, “
Friction Prediction of Rolling-Sliding Contact in Mixed EHL
,”
Measurement
100
(March
2017
):
262
269
,
53.
M.
 
Niemczewska-Wójcik
and
A.
 
Wójcik
, “
The Machining Process and Multi-Sensor Measurements of the Friction Components of Total Hip Joint Prosthesis
,”
Measurement
116
(February
2018
):
56
67
,
54.
M.
 
Liu
and
F.
 
Yang
, “
Finite Element Analysis of the Indentation-Induced Delamination of Bi-Layer Structures
,”
Journal of Computational and Theoretical Nanoscience
9
, no. 
6
(June
2012
):
851
858
,
55.
M.
 
Liu
and
F.
 
Yang
, “
Three-Dimensional Finite Element Simulation of the Berkovich Indentation of a Transversely Isotropic Piezoelectric Material: Effect of Material Orientation
,”
Modelling and Simulation in Materials Science and Engineering
21
, no. 
4
(May
2013
),
56.
G.
 
Subhash
and
W.
 
Zhang
, “
Investigation of the Overall Friction Coefficient in Single-Pass Scratch Test
,”
Wear
252
, nos. 
1–2
(January
2002
):
123
134
,
57.
D.
 
Liu
,
Q.
 
Wang
,
D.
 
Zhang
,
J.
 
Wang
, and
X.
 
Zhang
, “
Torsional Friction Behavior of Contact Interface between PEEK and CoCrMo in Calf Serum
,”
Journal of Tribology
141
, no. 
1
(August
2019
):
011602
,
58.
A. A.
 
Torrance
, “
Using Profilometry for the Quantitative Assessment of Tribological Function: PC-Based Software for Friction and Wear Prediction
,”
Wear
181–183
, no. 
1
(February
1995
):
397
404
,
59.
B.
 
Bhushan
and
M.
 
Nosonovsky
, “
Scale Effects in Dry and Wet Friction, Wear, and Interface Temperature
,”
Nanotechnology
15
, no. 
7
(
2004
):
749
761
,
60.
C.
 
Gao
,
L.
 
Yao
,
R.
 
Zheng
, and
M.
 
Liu
, “
Effect of Sample Tilt on Spherical Indentation of an Elastic Solid
,”
Journal of Testing and Evaluation
47
, no. 
4
(July
2018
),
61.
A. J.
 
Black
,
E. M.
 
Kopalinsky
, and
P. L. B.
 
Oxley
, “
An Investigation of the Different Regimes of Deformation which Can Occur when a Hard Wedge Slides over a Soft Surface: The Influence of Wedge Angle, Lubrication and Prior Plastic Working of the Surface
,”
Wear
123
, no. 
1
(April
1988
):
97
114
,
62.
N.
 
Zhang
,
C.
 
Li
,
A.
 
Lu
,
X.
 
Chen
,
D.
 
Liu
, and
E.
 
Zhu
, “
Experimental Studies on the Basic Friction Angle of Planar Rock Surfaces by Tilt Test
,”
Journal of Testing and Evaluation
41
, no. 
1
(January
2019
):
63.
A.-T.
 
Akono
,
N. X.
 
Randall
, and
F.-J.
 
Ulm
, “
Experimental Determination of the Fracture Toughness via Microscratch Tests: Application to Polymers, Ceramics, and Metals
,”
Journal of Materials Research
27
, no. 
2
(January
2012
):
485
493
,
64.
H. H. K.
 
Xu
and
S.
 
Jahanmir
, “
Transitions in the Mechanism of Material Removal in Abrasive Wear of Alumina
,”
Wear
192
, nos. 
1–2
(March
1996
):
228
232
,
65.
P.
 
Bandyopadhyay
,
A.
 
Dey
, and
A. K.
 
Mukhopadhyay
, “
Novel Combined Scratch and Nanoindentation Experiments on Soda-Lime-Silica Glass
,”
International Journal of Applied Glass Science
3
, no. 
2
(June
2012
):
163
179
,
66.
Y.
 
Yang
and
Y.
 
Shi
, “
Single Asperity Friction in the Wear Regime
,”
Friction
6
, no. 
3
(September
2018
):
316
322
,
67.
J.
 
Yan
,
A.
 
Lindo
,
R.
 
Schwaiger
, and
A. M.
 
Hodge
, “
Sliding Wear Behavior of Fully Nanotwinned Cu Alloys
,”
Friction
(
2018
),
68.
Y.
 
Wei
,
W.
 
Nixon
, and
Z.
 
Shi
, “
Evaluation of Wear Resistance of Snow Plow Blade Cutting Edges Using the Scratch Test Method
,”
Journal of Testing and Evaluation
26
, no. 
6
(November
1998
):
527
531
,
69.
H.
 
Deng
,
T. W.
 
Scharf
, and
J. A.
 
Barnard
, “
Adhesion Assessment of Silicon Carbide, Carbon, and Carbon Nitride Ultrathin Overcoats by Nanoscratch Techniques
,”
Journal of Applied Physics
81
, no. 
8
(April
1997
):
5396
5398
,
70.
P. J.
 
Burnett
and
D. S.
 
Rickerby
, “
The Scratch Adhesion Test: An Elastic-Plastic Indentation Analysis
,”
Thin Solid Films
157
, no. 
2
(February
1988
):
233
254
,
71.
J.
 
Sekler
,
P. A.
 
Steinmann
, and
H. E.
 
Hintermann
, “
The Scratch Test: Different Critical Load Determination Techniques
,”
Surface and Coatings Technology
36
, nos. 
1–2
(December
1988
):
519
529
,
72.
M. H.
 
Staia
,
E. S.
 
Puchi
, and
C. J.
 
Schmutz
, “
Adhesion of CVD Tin on 316l Surgical Stainless Steel Obtained in a Mass Transfer Regime
,”
Journal of Electronic Materials
26
, no. 
9
(September
1997
):
980
986
,
73.
E.
 
Palesch
and
V.
 
Cech
, “
Characterization of Interlayer Adhesion on Single Glass Fibers and Planar Glass Using the Nanoscratch Test Technique
,”
Thin Solid Films
636
(August
2017
):
353
358
,
74.
K.
 
Xu
,
N.
 
Hu
, and
J.
 
He
, “
Evaluation of the Bond Strength of Hard Coatings by the Contact Fatigue Test
,”
Journal of Adhesion Science and Technology
12
, no. 
10
(
1998
):
1055
1069
,
75.
L.
 
Huang
,
K.
 
Xu
,
J.
 
Lu
,
B.
 
Guelorget
, and
H.
 
Chen
, “
Nano-Scratch and Fretting Wear Study of DLC Coatings for Biomedical Application
,”
Diamond and Related Materials
10
, no. 
8
(August
2001
):
1448
1456
,
76.
T. W.
 
Wu
, “
Microscratch and Load Relaxation Tests for Ultra-Thin Films
,”
Journal of Materials Research
6
, no. 
2
(February
1991
):
407
426
,
77.
S.
 
Venkataraman
,
D. L.
 
Kohlstedt
, and
W. W.
 
Gerberich
, “
Microscratch Analysis of the Work of Adhesion for Pt Thin Films on NiO
,”
Journal of Materials Research
7
, no. 
5
(May
1992
):
1126
1132
,
78.
X.
 
Li
and
B.
 
Bhushan
, “
Micro/Nanomechanical and Tribological Characterization of Ultrathin Amorphous Carbon Coatings
,”
Journal of Materials Research
14
, no. 
6
(June
1999
):
2328
2337
,
79.
I.
 
Nieminen
,
P.
 
Andersson
, and
K.
 
Holmberg
, “
Friction Measurement by Using a Scratch Test Method
,”
Wear
130
, no. 
1
(March
1989
):
167
178
,
80.
Y.
 
Xie
and
H. M.
 
Hawthorne
, “
On the Possibility of Evaluating the Resistance of Materials to Wear by Ploughing Using a Scratch Method
,”
Wear
240
, nos. 
1–2
(May
2000
):
65
71
,
81.
V.
 
Jardret
,
H.
 
Zahouani
,
J. L.
 
Loubet
, and
T. G.
 
Mathia
, “
Understanding and Quantification of Elastic and Plastic Deformation during a Scratch Test
,”
Wear
218
, no. 
1
(June
1998
):
8
14
,
82.
Z.
 
Liu
,
J.
 
Sun
, and
W.
 
Shen
, “
Study of Plowing and Friction at the Surfaces of Plastic Deformed Metals
,”
Tribology International
35
, no. 
8
(August
2002
):
511
522
,
83.
C.
 
Shi
,
H.
 
Zhao
,
H.
 
Huang
,
S.
 
Wan
,
Z.
 
Ma
,
C.
 
Geng
, and
L.
 
Ren
, “
Effects of Probe Tilt on Nanoscratch Results: An Investigation by Finite Element Analysis
,”
Tribology International
60
(April
2013
):
64
69
,
84.
F.
 
Zhang
,
B.
 
Meng
,
Y.
 
Geng
,
Y.
 
Zhang
, and
Z.
 
Li
, “
Friction Behavior in Nanoscratching of Reaction Bonded Silicon Carbide Ceramic with Berkovich and Sphere Indenters
,”
Tribology International
97
(May
2016
):
21
30
,
85.
A. H.
 
Carreon
and
P. D.
 
Funkenbusch
, “
Material Specific Nanoscratch Ploughing Friction Coefficient
,”
Tribology International
126
(October
2018
):
363
375
,
86.
A. C.
 
Fischer-Cripps
,
Nanoindentation
(
New York
:
Springer-Verlag New York
,
2004
).
87.
M.
 
Liu
,
G.
 
Zhu
,
X.
 
Dong
,
J.
 
Liao
, and
C.
 
Gao
, “
Effects of Sample Tilt on Vickers Indentation Hardness
,” in
Advanced Mechanical Science and Technology for the Industrial Revolution 4.0
(
Singapore
:
Springer Nature
,
2018
),
271
283
.
88.
Z.-H.
 
Xu
and
X.
 
Li
, “
Effect of Sample Tilt on Nanoindentation Behaviour of Materials
,”
Philosophical Magazine
87
, no. 
16
(
2007
):
2299
2312
,
89.
M. S.
 
Kashani
and
V.
 
Madhavan
, “
Analysis and Correction of the Effect of Sample Tilt on Results of Nanoindentation
,”
Acta Materialia
59
, no. 
3
(February
2011
):
883
895
,
90.
H.
 
Huang
,
H.
 
Zhao
,
C.
 
Shi
, and
L.
 
Zhang
, “
Using Residual Indent Morphology to Measure the Tilt between the Triangular Pyramid Indenter and the Sample Surface
,”
Measurement Science and Technology
24
, no. 
10
(October
2013
):
105602
,
91.
C.
 
Shi
,
H.
 
Zhao
,
H.
 
Huang
,
L.
 
Xu
,
L.
 
Ren
,
M.
 
Bai
,
J.
 
Li
, and
X.
 
Hu
, “
Effects of Indenter Tilt on Nanoindentation Results of Fused Silica: An Investigation by Finite Element Analysis
,”
Materials Transactions
54
, no. 
6
(
2013
):
958
963
,
92.
L.-Y.
 
Huang
,
K.-W.
 
Xu
, and
J.
 
Lu
, “
Evaluation of Scratch Resistance of Diamond-Like Carbon Films on Ti Alloy Substrate by Nano-Scratch Technique
,”
Diamond and Related Materials
11
, no. 
8
(August
2002
):
1505
1510
,
93.
C.
 
Charitidis
,
S.
 
Logothetidis
, and
M.
 
Gioti
, “
A Comparative Study of the Nanoscratching Behavior of Amorphous Carbon Films Grown under Various Deposition Conditions
,”
Surface and Coatings Technology
125
, nos. 
1–3
(March
2000
):
201
206
,
94.
T. W.
 
Scharf
and
J. A.
 
Barnard
, “
Nanotribology of Ultrathin a:SiC/SiC-N Overcoats Using a Depth Sensing Nanoindentation Multiple Sliding Technique
,”
Thin Solid Films
308–309
(October
1997
):
340
344
,
95.
S. D.
 
McAdams
,
T. Y.
 
Tsui
,
W. C.
 
Oliver
, and
G. M.
 
Pharr
, “
Effects of Interlayers on the Scratch Adhesion Performance of Ultra-Thin Films of Copper and Gold on Silicon Substrates
,” in
MRS Proceedings Volume 356: Symposium B2 – Thin Film Stresses and Mechanical Properties V
(
Cambridge
:
Cambridge University Press
,
1994
),
809
.
96.
C.
 
Gao
and
M.
 
Liu
, “
Effects of Normal Load on the Coefficient of Friction by Microscratch Test of Copper with a Spherical Indenter
,”
Tribology Letters
67
, no. 
1
(March
2019
):
8
,
97.
J.
 
Zhang
,
Y.
 
Wei
,
T.
 
Sun
,
A.
 
Hartmaier
,
Y.
 
Yan
, and
X.
 
Li
, “
Twin Boundary Spacing-Dependent Friction in Nanotwinned Copper
,”
Physical Review B
85
, no. 
5
(February
2012
):
054109
,
98.
K.
 
Li
,
B. Y.
 
Ni
, and
J. C. M.
 
Li
, “
Stick-Slip in the Scratching of Styrene-Acrylonitrile Copolymer
,”
Journal of Materials Research
11
, no. 
6
(June
1996
):
1574
1580
,
99.
N.
 
Xu
,
W.
 
Han
,
Y.
 
Wang
,
J.
 
Li
, and
Z.
 
Shan
, “
Nanoscratching of Copper Surface by CeO2
,”
Acta Materialia
124
(February
2017
):
343
350
,
100.
H.
 
Jiang
,
R.
 
Browning
,
J.
 
Fincher
,
A.
 
Gasbarro
,
S.
 
Jones
, and
H.-J.
 
Sue
, “
Influence of Surface Roughness and Contact Load on Friction Coefficient and Scratch Behavior of Thermoplastic Olefins
,”
Applied Surface Science
254
, no. 
15
(May
2008
):
4494
4499
,
101.
J. S.
 
Field
and
M. V.
 
Swain
, “
A Simple Predictive Model for Spherical Indentation
,”
Journal of Materials Research
8
, no. 
2
(February
1993
):
297
306
,
102.
C.
 
Gao
and
M.
 
Liu
, “
Characterization of Spherical Indenter with Fused Silica under Small Deformation by Hertzian Relation and Oliver and Pharr’s Method
,”
Vacuum
153
(July
2018
):
82
90
,
103.
C.
 
Gao
and
M.
 
Liu
, “
Instrumented Indentation of Fused Silica by Berkovich Indenter
,”
Journal of Non-Crystalline Solids
475
(November
2017
):
151
160
,
104.
C.
 
Gao
,
L.
 
Yao
, and
M.
 
Liu
, “
Berkovich Nanoindentation of Borosilicate K9 Glass
,”
Optical Engineering
57
, no. 
3
(March
2018
):
034104
,
105.
G.
 
Zhao
,
M.
 
Liu
,
Z.
 
An
,
Y.
 
Ren
,
P. K.
 
Liaw
, and
F.
 
Yang
, “
Electromechanical Responses of Cu Strips
,”
Journal of Applied Physics
113
, no. 
18
(May
2013
),
106.
G. F.
 
Vander Voort
and
G. M.
 
Lucas
, “
Microindentation Hardness Testing
,”
Advanced Materials & Processes
153
, no. 
3
(September
1998
):
21
25
.
107.
J. L.
 
Bucaille
,
E.
 
Felder
, and
G.
 
Hochstetter
, “
Mechanical Analysis of the Scratch Test on Elastic and Perfectly Plastic Materials with the Three-Dimensional Finite Element Modeling
,”
Wear
249
, nos. 
5–6
(June
2001
):
422
432
,
108.
F. P.
 
Bowden
and
D.
 
Tabor
,
The Friction and Lubrication of Solids
(
Oxford
:
Clarendon Press
,
1950
).
109.
H.
 
Pelletier
,
C.
 
Gauthier
, and
R.
 
Schirrer
, “
Influence of the Friction Coefficient on the Contact Geometry during Scratch onto Amorphous Polymers
,”
Wear
268
, nos. 
9–10
(March
2010
):
1157
1169
,
110.
Y. D.
 
Yan
,
T.
 
Sun
, and
S.
 
Dong
, “
Study on Effects of Tip Geometry on AFM Nanoscratching Tests
,”
Wear
262
, nos. 
3–4
(February
2007
):
477
483
,
111.
F.
 
Zhang
,
B.
 
Meng
,
Y.
 
Geng
, and
Y.
 
Zhang
, “
Study on the Machined Depth when Nanoscratching on 6H-SiC Using Berkovich Indenter: Modelling and Experimental Study
,”
Applied Surface Science
368
(April
2016
):
449
455
,
112.
S. E.
 
Flores
,
M. G.
 
Pontin
, and
F. W.
 
Zok
, “
Scratching of Elastic/Plastic Materials with Hard Spherical Indenters
,”
Journal of Applied Mechanics
75
, no. 
6
(November
2008
):
061021
,
113.
K. O.
 
Kese
,
Z. C.
 
Li
, and
B.
 
Bergman
, “
Method to Account for True Contact Area in Soda-Lime Glass during Nanoindentation with the Berkovich Tip
,”
Materials Science and Engineering A
404
, nos. 
1–2
(September
2005
):
1
8
,
114.
K.
 
Kese
and
Z. C.
 
Li
, “
Semi-Ellipse Method for Accounting for the Pile-Up Contact Area during Nanoindentation with the Berkovich Indenter
,”
Scripta Materialia
55
, no. 
8
(October
2006
):
699
702
,
You do not currently have access to this content.