Abstract

One of the most promising methods for cancer treatment that is developed substantially in theoretical and clinical fields is hyperthermia. Magnetic hyperthermia using nanoparticles has significant advantages in comparison with other hyperthermia treatments. Providing the proper dosage of magnetic nanoparticles (MNPs) in the proper location(s) is one the most challenging steps of this procedure. In the present article, an efficient and robust analytical algorithm to determine the proper injection location(s) and dosage(s) in addition to the number of infusions for an arbitrary cancerous cells distribution in the tissue is presented. The method is based on temperature elevation of tumor spots to a specified amount and prevention of overheating in the nearby healthy tissues. The algorithm is based on tissue imaging, hyperthermia level decision, and implementation of inverse Fourier’s transformation, Green’s function, as well as genetic algorithm. Based on the obtained results, the algorithm can achieve 17 % and 12 % relative deviation error with respect to the desired temperature for uniform and concentrated cancerous cells distribution pattern, respectively, while for the more complex pattern examined, the error increased to 25 %, which is quite promising for the complex test case.

References

1.
Gas
,
P.
, “
Essential Facts on the History of Hyperthermia and Their Connections with Electromedicine
,”
Przeglad Elektrotechniczny
, Vol. 
87
, No. 
12b
,
2011
, pp. 
37
40
.
2.
Chae
,
S. Y.
,
Kim
,
Y.
,
Park
,
M. J.
,
Yang
,
J.
,
Park
,
H.
,
Namgung
,
M. S.
,
Rhim
,
H.
, and
Lim
,
H. K.
, “
High-Intensity Focused Ultrasound-Induced, Localized Mild Hyperthermia to Enhance Anti-Cancer Efficacy of Systemic Doxorubicin: An Experimental Study
,”
Ultrasound Med. Biol.
, Vol. 
40
, No. 
7
,
2014
, pp. 
1554
1563
, https://doi.org/10.1016/j.ultrasmedbio.2014.01.005
3.
Hynes
,
M. B.
,
Bujak
,
M. C.
,
Chérin
,
E.
,
Sade
,
S.
, and
Foster
,
F. S.
, “
Design of a Subtarsal Ultrasonic Transducer for Mild Hyperthermia Treatment of Dry Eye Disease
,”
Ultrasound Med. Biol.
, Vol. 
42
, No. 
1
,
2016
, pp. 
232
242
, https://doi.org/10.1016/j.ultrasmedbio.2015.09.001
4.
Gas
,
P.
, “
Optimization of Multi-Slot Coaxial Antennas for Microwave Thermotherapy Based on the S11-Parameter Analysis
,”
Biocybern. Biomed. Eng.
, Vol. 
37
, No. 
1
,
2017
, pp. 
78
93
, https://doi.org/10.1016/j.bbe.2016.10.001
5.
Cieśla
,
A.
and
Syrek
,
P.
, “
Parameters and Position of the Applicator’s Effect on Magnetic Field Distribution during Magnetotherapy
,”
Przeglad Elektrotechniczny
, Vol. 
88
, No. 
12b
,
2012
, pp. 
124
127
.
6.
Boroon
,
M. P.
,
Ayani
,
M. B.
, and
Bazaz
,
S. R.
, “
Estimation of the Optimum Number and Location of Nanoparticle Injections and the Specific Loss Power for Ideal Hyperthermia
,”
J. Therm. Bio.
, Vol. 
72
,
2018
, pp. 
127
136
, https://doi.org/10.1016/j.jtherbio.2018.01.010
7.
Morshed
,
R. A.
,
Gutova
,
M.
,
Juliano
,
J.
,
Barish
,
M. E.
,
Hawkins-Daarud
,
A.
,
Oganesyan
,
D.
,
Vazgen
,
K.
,
Yang
,
T.
,
Annala
,
A.
,
Ahmed
,
A. U.
,
Aboody
,
K. S.
,
Swanson
,
K. R.
,
Moats
,
R. A.
, and
Lesniak
,
M. S.
, “
Analysis of Glioblastoma Tumor Coverage by Oncolytic Virus-Loaded Neural Stem Cells Using MRI-Based Tracking and Histological Reconstruction
,”
Cancer Gene Ther.
, Vol. 
22
, No. 
1
,
2015
, pp. 
55
61
, https://doi.org/10.1038/cgt.2014.72
8.
Fear
,
E. C.
,
Meaney
,
P. M.
, and
Stuchly
,
M. A.
, “
Microwaves for Breast Cancer Detection?
,”
IEEE Potentials
, Vol. 
22
, No. 
1
,
2003
, pp. 
12
18
, https://doi.org/10.1109/MP.2003.1180933
9.
Liberale
,
G.
,
Vankerckhove
,
S.
,
Galdon
,
M. G.
,
Donckier
,
V.
,
Larsimont
,
D.
, and
Bourgeois
,
P.
, “
Fluorescence Imaging after Intraoperative Intravenous Injection of Indocyanine Green for Detection of Lymph Node Metastases in Colorectal Cancer
,”
Eur. J. Surg. Oncol.
, Vol. 
41
, No. 
9
,
2015
, pp. 
1256
1260
, https://doi.org/10.1016/j.ejso.2015.05.011
10.
Bhowmik
,
A.
,
Singh
,
R.
,
Repaka
,
R.
, and
Mishra
,
S. C.
, “
Conventional and Newly Developed Bioheat Transport Models in Vascularized Tissues: A Review
,”
J. Therm. Bio.
, Vol. 
38
, No. 
3
,
2013
, pp. 
107
125
, https://doi.org/10.1016/j.jtherbio.2012.12.003
11.
Pennes
,
H. H.
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
, Vol. 
85
, No. 
1
,
1998
, pp. 
5
34
, https://doi.org/10.1152/jappl.1998.85.1.5
12.
Charny
,
C. K.
and
Levin
,
R. L.
, “
Bioheat Transfer in a Branching Countercurrent Network during Hyperthermia
,”
J. Biomech. Eng.
, Vol. 
111
, No. 
4
,
1989
, pp. 
263
270
, https://doi.org/10.1115/1.3168377
13.
Weinbaum
,
S.
and
Jiji
,
L. M.
, “
A New Simplified Bioheat Equation for the Effect of Blood Flow on Local Average Tissue Temperature
,”
J. Biomech. Eng.
, Vol. 
107
, No. 
2
,
1985
, pp. 
131
139
, https://doi.org/10.1115/1.3138533
14.
Mahjoob
,
S.
and
Vafai
,
K.
, “
Analytical Characterization of Heat Transport through Biological Media Incorporating Hyperthermia Treatment
,”
Int. J. Heat Mass Transfer
, Vol. 
52
, Nos. 
5–6
,
2009
, pp. 
1608
1618
, https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.038
15.
Ozısık
,
M. N.
,
Heat Conduction
,
John Wiley & Sons
,
New York, NY
,
1993
, 692p.
This content is only available via PDF.
You do not currently have access to this content.