Abstract
In this study, we consider the quality characteristics of two products, X and Y, to follow the independent exponentiated Weibull distribution under progressive type II right censored sample in order to construct the maximum likelihood estimator (MLE) of the measure of performance R(=P[X > Y]). Moreover, we also use the MLE to construct a new hypothesis testing procedures for R in order to assess the quality performance of product and compare the superiority-inferiority of two products. Finally, two numerical examples and the Monte Carlo simulation study are utilized to illustrate the use of the testing procedure.
References
1.
Kotz
, S.
, Lumelskii
, Y.
, and Pensky
, M.
, The Stress-Strength Model and Its Generalizations: Theory and Applications
, World Scientific
, Singapore
, 2003
, 272p.2.
McCool
, J. I.
, “Inference on P{Y < X} in the Weibull Case
,” Commun. Stat. Simul. Comput.
, Vol. 20
, No. 1
, 1991
, pp. 129
–148
, https://doi.org/10.1080/036109191088129443.
Kundu
, D.
and Gupta
, R. D.
, “Estimation of P[Y < X] for Weibull Distributions
,” IEEE Trans. Reliab.
, Vol. 55
, No. 2
, 2006
, pp. 270
–280
, https://doi.org/10.1109/TR.2006.8749184.
Krishnamoorthy
, K.
and Lin
, Y.
, “Confidence Limits for Stress-Strength Reliability Involving Weibull Models
,” J. Stat. Plann. Inference
, Vol. 140
, No. 7
, 2010
, pp. 1754
–1764
, https://doi.org/10.1016/j.jspi.2009.12.0285.
Aminzadeh
, M. S.
, “Estimation of Reliability for Exponential Stress-Strength Models with Explanatory Variables
,” Appl. Math. Comput.
, Vol. 84
, Nos. 2–3
, 1997
, pp. 269
–274
.6.
Guo
, H.
and Krishnamoorthy
, K.
, “New Approximate Inferential Methods for the Reliability Parameter in Stress-Strength Model: The Normal Case
,” Commun. Stat. Theory Methods
, Vol. 33
, No. 7
, 2004
, pp. 1715
–1731
, https://doi.org/10.1081/STA-1200372697.
Tong
, H.
, “A Note on the Estimation of P(Y < X) in the Exponential Case
,” Technometrics
, Vol. 16
, No. 4
, 1974
, p. 625.8.
Tong
, H.
, “On the Estimation of Pr{Y ≤ X} for Exponential Families
,” IEEE Trans. Reliab.
, Vol. R-26
, No. 1
, 1977
, pp. 54
–56
, https://doi.org/10.1109/TR.1977.52150749.
Awad
, A. M.
, Azzam
, M. M.
, and Hamdan
, M. A.
, “Some Inference Results on Pr(X < Y) in the Bivariate Exponential Model
,” Commun. Stat. Theory Methods
, Vol. 10
, No. 24
, 1981
, pp. 2515
–2525
, https://doi.org/10.1080/0361092810882820610.
Baklizi
, A.
and El-Masri
, A. E. Q.
, “Shrinkage Estimation of P(X < Y) in the Exponential Case with Common Location Parameter
,” Metrika
, Vol. 59
, No. 2
, 2004
, pp. 163
–171
, https://doi.org/10.1007/s00184030027711.
Nadarajah
, S.
and Kotz
, S.
, “Reliability for Some Bivariate Exponential Distributions
,” Math. Prob. Eng.
, Vol. 2006
, 2006
, 14p.12.
Krishnamoorthy
, K.
, Mukherjee
, S.
, and Guo
, H.
, “Inference on Reliability in Two-Parameter Exponential Stress-Strength Model
,” Metrika
, Vol. 65
, No. 3
, 2007
, pp. 261
–273
, https://doi.org/10.1007/s00184-006-0074-713.
Jiang
, L.
and Wong
, A. C. M.
, “A Note on Inference for P(X < Y) for Right Truncated Exponentially Distributed Data
,” Stat. Pap.
, Vol. 49
, No. 4
, 2008
, pp. 637
–651
, https://doi.org/10.1007/s00362-006-0034-314.
Kundu
, D.
and Gupta
, R. D.
, “Estimation of P[Y < X] for Generalized Exponential Distribution
,” Metrika
, Vol. 61
, No. 3
, 2005
, pp. 291
–308
, https://doi.org/10.1007/s00184040034515.
Wong
, A. C. M.
and Wu
, Y. Y.
, “A Note on Interval Estimation of P(X < Y) Using Lower Record Data from the Generalized Exponential Distribution
,” Comput. Stat. Data Anal.
, Vol. 53
, No. 10
, 2009
, pp. 3650
–3658
, https://doi.org/10.1016/j.csda.2009.03.00616.
Hajebi
, M.
, Rezaei
, S.
, and Nadarajah
, S.
, “Confidence Intervals for P(Y < X) for the Generalized Exponential Distribution
,” Stat. Method.
, Vol. 9
, No. 3
, 2012
, pp. 445
–455
, https://doi.org/10.1016/j.stamet.2011.10.00117.
Abd Elfattah
, A. M.
and Mohamed
, M. O.
, “Inferences for P(Y<X) for Weibull Distribution Based on Censored Samples
,” InterStat, 2008
, http://web.archive.org/web/20180831040621/http://interstat.statjournals.net/YEAR/2008/articles/0801001.pdf/ (accessed 31 Aug. 2018).18.
Kundu
, D.
and Raqab
, M. Z.
, “Estimation of R = P(Y < X) for Three-Parameter Weibull Distribution
,” Stat. Probab. Lett.
, Vol. 79
, No. 17
, 2009
, pp. 1839
–1846
, https://doi.org/10.1016/j.spl.2009.05.02619.
Asgharzadeh
, A.
, Valiollahi
, R.
, and Raqab
, M. Z.
, “Stress-Strength Reliability of Weibull Distribution Based on Progressively Censored Samples
,” SORT
, Vol. 35
, No. 2
, 2011
, pp. 103
–124
.20.
Amiri
, N.
, Azimi
, R.
, Yaghmaei
, F.
, and Babanezhad
, M.
, “Estimation of Stress-Strength Parameter for Two-Parameter Weibull Distribution
,” Int. J. Adv. Stat. Probab.
, Vol. 1
, No. 1
, 2013
, pp. 4
–8
, https://doi.org/10.14419/ijasp.v1i1.75221.
Lee
, W.-C.
, Wu
, J.-W.
, and Chi
, C.-H.
, “Computational Procedure of Assessing the Quality Performance for Weibull Products with the Upper Record Values
,” ICIC Express Lett. Part B Appl.
, Vol. 5
, No. 4
, 2014
, pp. 1063
–1068
.22.
Rezaei
, S.
, Tahmasbi
, R.
, and Mahmoodi
, M.
, “Estimation of P[Y<X] for Generalized Pareto Distribution
,” J. Stat. Plann. Inference
, Vol. 140
, No. 2
, 2010
, pp. 480
–494
, https://doi.org/10.1016/j.jspi.2009.07.02423.
Wong
, A.
, “Interval Estimation of P(Y < X) for Generalized Pareto Distribution
,” J. Stat. Plann. Inference
, Vol. 142
, No. 2
, 2012
, pp. 601
–607
, https://doi.org/10.1016/j.jspi.2011.04.02424.
Asgharzadeh
, A.
, Valiollahi
, R.
, and Raqab
, M. Z.
, “Estimation of the Stress-Strength Reliability for the Generalized Logistic Distribution
,” Stat. Method.
, Vol. 15
, 2013
, pp. 73
–94
, https://doi.org/10.1016/j.stamet.2013.05.00225.
Tarvirdizade
, B.
and Ahmadpour
, M.
, “Estimation of the Stress-Strength Reliability for the Two-Parameter Bathtub-Shaped Lifetime Distribution Based on Upper Record Values
,” Stat. Method.
, Vol. 31
, 2016
, pp. 58
–72
, https://doi.org/10.1016/j.stamet.2016.01.00526.
Kundu
, D.
and Raqab
, M. Z.
, “Estimation of R = P(Y < X) for Three-Parameter Generalized Rayleigh Distribution
,” J. Stat. Comput. Simul.
, Vol. 85
, No. 4
, 2015
, pp. 725
–739
, https://doi.org/10.1080/00949655.2013.83967827.
Mudholkar
, G. S.
and Srivastava
, D. K.
, “Exponentiated Weibull Family for Analyzing Bathtub Failure-Rate Data
,” IEEE Trans. Reliab.
, Vol. 42
, No. 2
, 1993
, pp. 299
–302
, https://doi.org/10.1109/24.22950428.
Singh
, U.
, Gupta
, P. K.
, and Upadhyay
, S. K.
, “Estimation of Three-Parameter Exponentiated-Weibull Distribution under Type-II Censoring
,” J. Stat. Plann. Inference
, Vol. 134
, No. 2
, 2005
, pp. 350
–372
, https://doi.org/10.1016/j.jspi.2004.04.01829.
Wu
, J.-W.
and Lee
, W.-C.
, “Statistical Testing Procedure for Assessing the Quality Performance of Exponentiated Weibull Products with the Lower Record Values
,” J. Stat. Manage. Syst.
, Vol. 18
, Nos. 1–2
, 2015
, pp. 161
–176
, https://doi.org/10.1080/09720510.2014.96176030.
Fernández
, A. J.
, “On Estimating Exponential Parameters with General Type II Progressive Censoring
,” J. Stat. Plann. Inference
, Vol. 121
, No. 1
, 2004
, pp. 135
–147
, https://doi.org/10.1016/S0378-3758(03)00083-131.
Sen
, P. K
., “Progressive Censoring Schemes
,” Encyclopedia of Statistical Sciences 7
, Kotz
S.
and Johnson
N. L.
, Eds., John Wiley & Sons Inc.
, Hoboken, NJ
, 1986
, pp. 296
–299
, https://doi.org/10.1002/0471667196.ess208532.
Viveros
, R.
and Balakrishnan
, N.
, “Interval Estimation of Parameters of Life from Progressively Censored Data
,” Technometrics
, Vol. 36
, No. 1
, 1994
, pp. 84
–91
, https://doi.org/10.1080/00401706.1994.1048540333.
Fausett
, L. V.
, Applied Numerical Analysis Using MATLAB
, Prentice Hall
, Upper Saddle River, NJ
, 1999
, 596p.34.
Zehna
, P. W.
, “Invariance of Maximum Likelihood Estimation
,” Ann. Math. Stat.
, Vol. 37
, No. 3
, 1966
, p. 744, https://doi.org/10.1214/aoms/117769947535.
Efron
, B.
and Hinkley
, D. V.
, “Assessing the Accuracy of the Maximum Likelihood Estimator: Observed Versus Expected Fisher Information
,” Biometrika
, Vol. 65
, No. 3
, 1978
, pp. 457
–483
, https://doi.org/10.1093/biomet/65.3.45736.
Soliman
, A. A.
, “Estimation of Parameters of Life from Progressively Censored Data Using Burr-XII Model
,” IEEE Trans. Reliab.
, Vol. 54
, No. 1
, 2005
, pp. 34
–42
, https://doi.org/10.1109/TR.2004.84252837.
Lawless
, J. F.
, Statistical Models and Methods for Lifetime Data
, 2nd ed., John Wiley & Sons Inc.
, Hoboken, NJ
, 2002
, 664p.38.
Balakrishnan
, N.
and Aggarwala
, R.
, Progressive Censoring: Theory, Methods and Applications
, Birkhäuser
, Basel, Switzerland
, 2000
, 248p.
This content is only available via PDF.
All rights reserved. This material may not be reproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ASTM International.
You do not currently have access to this content.