Abstract

In this study, we consider the quality characteristics of two products, X and Y, to follow the independent exponentiated Weibull distribution under progressive type II right censored sample in order to construct the maximum likelihood estimator (MLE) of the measure of performance R(=P[X > Y]). Moreover, we also use the MLE to construct a new hypothesis testing procedures for R in order to assess the quality performance of product and compare the superiority-inferiority of two products. Finally, two numerical examples and the Monte Carlo simulation study are utilized to illustrate the use of the testing procedure.

References

1.
Kotz
,
S.
,
Lumelskii
,
Y.
, and
Pensky
,
M.
,
The Stress-Strength Model and Its Generalizations: Theory and Applications
,
World Scientific
,
Singapore
,
2003
, 272p.
2.
McCool
,
J. I.
, “
Inference on P{Y < X} in the Weibull Case
,”
Commun. Stat. Simul. Comput.
, Vol. 
20
, No. 
1
,
1991
, pp. 
129
148
, https://doi.org/10.1080/03610919108812944
3.
Kundu
,
D.
and
Gupta
,
R. D.
, “
Estimation of P[Y < X] for Weibull Distributions
,”
IEEE Trans. Reliab.
, Vol. 
55
, No. 
2
,
2006
, pp. 
270
280
, https://doi.org/10.1109/TR.2006.874918
4.
Krishnamoorthy
,
K.
and
Lin
,
Y.
, “
Confidence Limits for Stress-Strength Reliability Involving Weibull Models
,”
J. Stat. Plann. Inference
, Vol. 
140
, No. 
7
,
2010
, pp. 
1754
1764
, https://doi.org/10.1016/j.jspi.2009.12.028
5.
Aminzadeh
,
M. S.
, “
Estimation of Reliability for Exponential Stress-Strength Models with Explanatory Variables
,”
Appl. Math. Comput.
, Vol. 
84
, Nos.
2–3
,
1997
, pp. 
269
274
.
6.
Guo
,
H.
and
Krishnamoorthy
,
K.
, “
New Approximate Inferential Methods for the Reliability Parameter in Stress-Strength Model: The Normal Case
,”
Commun. Stat. Theory Methods
, Vol. 
33
, No. 
7
,
2004
, pp. 
1715
1731
, https://doi.org/10.1081/STA-120037269
7.
Tong
,
H.
, “
A Note on the Estimation of P(Y < X) in the Exponential Case
,”
Technometrics
, Vol. 
16
, No. 
4
,
1974
, p. 625.
8.
Tong
,
H.
, “
On the Estimation of Pr{Y ≤ X} for Exponential Families
,”
IEEE Trans. Reliab.
, Vol. 
R-26
, No. 
1
,
1977
, pp. 
54
56
, https://doi.org/10.1109/TR.1977.5215074
9.
Awad
,
A. M.
,
Azzam
,
M. M.
, and
Hamdan
,
M. A.
, “
Some Inference Results on Pr(X < Y) in the Bivariate Exponential Model
,”
Commun. Stat. Theory Methods
, Vol. 
10
, No. 
24
,
1981
, pp. 
2515
2525
, https://doi.org/10.1080/03610928108828206
10.
Baklizi
,
A.
and
El-Masri
,
A. E. Q.
, “
Shrinkage Estimation of P(X < Y) in the Exponential Case with Common Location Parameter
,”
Metrika
, Vol. 
59
, No. 
2
,
2004
, pp. 
163
171
, https://doi.org/10.1007/s001840300277
11.
Nadarajah
,
S.
and
Kotz
,
S.
, “
Reliability for Some Bivariate Exponential Distributions
,”
Math. Prob. Eng.
, Vol. 
2006
,
2006
, 14p.
12.
Krishnamoorthy
,
K.
,
Mukherjee
,
S.
, and
Guo
,
H.
, “
Inference on Reliability in Two-Parameter Exponential Stress-Strength Model
,”
Metrika
, Vol. 
65
, No. 
3
,
2007
, pp. 
261
273
, https://doi.org/10.1007/s00184-006-0074-7
13.
Jiang
,
L.
and
Wong
,
A. C. M.
, “
A Note on Inference for P(X < Y) for Right Truncated Exponentially Distributed Data
,”
Stat. Pap.
, Vol. 
49
, No. 
4
,
2008
, pp. 
637
651
, https://doi.org/10.1007/s00362-006-0034-3
14.
Kundu
,
D.
and
Gupta
,
R. D.
, “
Estimation of P[Y < X] for Generalized Exponential Distribution
,”
Metrika
, Vol. 
61
, No. 
3
,
2005
, pp. 
291
308
, https://doi.org/10.1007/s001840400345
15.
Wong
,
A. C. M.
and
Wu
,
Y. Y.
, “
A Note on Interval Estimation of P(X < Y) Using Lower Record Data from the Generalized Exponential Distribution
,”
Comput. Stat. Data Anal.
, Vol. 
53
, No. 
10
,
2009
, pp. 
3650
3658
, https://doi.org/10.1016/j.csda.2009.03.006
16.
Hajebi
,
M.
,
Rezaei
,
S.
, and
Nadarajah
,
S.
, “
Confidence Intervals for P(Y < X) for the Generalized Exponential Distribution
,”
Stat. Method.
, Vol. 
9
, No. 
3
,
2012
, pp. 
445
455
, https://doi.org/10.1016/j.stamet.2011.10.001
17.
Abd Elfattah
,
A. M.
and
Mohamed
,
M. O.
, “
Inferences for P(Y<X) for Weibull Distribution Based on Censored Samples
,” InterStat,
2008
, http://web.archive.org/web/20180831040621/http://interstat.statjournals.net/YEAR/2008/articles/0801001.pdf/ (accessed 31 Aug. 2018).
18.
Kundu
,
D.
and
Raqab
,
M. Z.
, “
Estimation of R = P(Y < X) for Three-Parameter Weibull Distribution
,”
Stat. Probab. Lett.
, Vol. 
79
, No. 
17
,
2009
, pp. 
1839
1846
, https://doi.org/10.1016/j.spl.2009.05.026
19.
Asgharzadeh
,
A.
,
Valiollahi
,
R.
, and
Raqab
,
M. Z.
, “
Stress-Strength Reliability of Weibull Distribution Based on Progressively Censored Samples
,”
SORT
, Vol. 
35
, No. 
2
,
2011
, pp. 
103
124
.
20.
Amiri
,
N.
,
Azimi
,
R.
,
Yaghmaei
,
F.
, and
Babanezhad
,
M.
, “
Estimation of Stress-Strength Parameter for Two-Parameter Weibull Distribution
,”
Int. J. Adv. Stat. Probab.
, Vol. 
1
, No. 
1
,
2013
, pp. 
4
8
, https://doi.org/10.14419/ijasp.v1i1.752
21.
Lee
,
W.-C.
,
Wu
,
J.-W.
, and
Chi
,
C.-H.
, “
Computational Procedure of Assessing the Quality Performance for Weibull Products with the Upper Record Values
,”
ICIC Express Lett. Part B Appl.
, Vol. 
5
, No. 
4
,
2014
, pp. 
1063
1068
.
22.
Rezaei
,
S.
,
Tahmasbi
,
R.
, and
Mahmoodi
,
M.
, “
Estimation of P[Y<X] for Generalized Pareto Distribution
,”
J. Stat. Plann. Inference
, Vol. 
140
, No. 
2
,
2010
, pp. 
480
494
, https://doi.org/10.1016/j.jspi.2009.07.024
23.
Wong
,
A.
, “
Interval Estimation of P(Y < X) for Generalized Pareto Distribution
,”
J. Stat. Plann. Inference
, Vol. 
142
, No. 
2
,
2012
, pp. 
601
607
, https://doi.org/10.1016/j.jspi.2011.04.024
24.
Asgharzadeh
,
A.
,
Valiollahi
,
R.
, and
Raqab
,
M. Z.
, “
Estimation of the Stress-Strength Reliability for the Generalized Logistic Distribution
,”
Stat. Method.
, Vol. 
15
,
2013
, pp. 
73
94
, https://doi.org/10.1016/j.stamet.2013.05.002
25.
Tarvirdizade
,
B.
and
Ahmadpour
,
M.
, “
Estimation of the Stress-Strength Reliability for the Two-Parameter Bathtub-Shaped Lifetime Distribution Based on Upper Record Values
,”
Stat. Method.
, Vol. 
31
,
2016
, pp. 
58
72
, https://doi.org/10.1016/j.stamet.2016.01.005
26.
Kundu
,
D.
and
Raqab
,
M. Z.
, “
Estimation of R = P(Y < X) for Three-Parameter Generalized Rayleigh Distribution
,”
J. Stat. Comput. Simul.
, Vol. 
85
, No. 
4
,
2015
, pp. 
725
739
, https://doi.org/10.1080/00949655.2013.839678
27.
Mudholkar
,
G. S.
and
Srivastava
,
D. K.
, “
Exponentiated Weibull Family for Analyzing Bathtub Failure-Rate Data
,”
IEEE Trans. Reliab.
, Vol. 
42
, No. 
2
,
1993
, pp. 
299
302
, https://doi.org/10.1109/24.229504
28.
Singh
,
U.
,
Gupta
,
P. K.
, and
Upadhyay
,
S. K.
, “
Estimation of Three-Parameter Exponentiated-Weibull Distribution under Type-II Censoring
,”
J. Stat. Plann. Inference
, Vol. 
134
, No. 
2
,
2005
, pp. 
350
372
, https://doi.org/10.1016/j.jspi.2004.04.018
29.
Wu
,
J.-W.
and
Lee
,
W.-C.
, “
Statistical Testing Procedure for Assessing the Quality Performance of Exponentiated Weibull Products with the Lower Record Values
,”
J. Stat. Manage. Syst.
, Vol. 
18
, Nos.
1–2
,
2015
, pp. 
161
176
, https://doi.org/10.1080/09720510.2014.961760
30.
Fernández
,
A. J.
, “
On Estimating Exponential Parameters with General Type II Progressive Censoring
,”
J. Stat. Plann. Inference
, Vol. 
121
, No. 
1
,
2004
, pp. 
135
147
, https://doi.org/10.1016/S0378-3758(03)00083-1
31.
Sen
,
P. K
., “
Progressive Censoring Schemes
,”
Encyclopedia of Statistical Sciences 7
,
Kotz
S.
and
Johnson
N. L.
, Eds.,
John Wiley & Sons Inc.
,
Hoboken, NJ
,
1986
, pp. 
296
299
, https://doi.org/10.1002/0471667196.ess2085
32.
Viveros
,
R.
and
Balakrishnan
,
N.
, “
Interval Estimation of Parameters of Life from Progressively Censored Data
,”
Technometrics
, Vol. 
36
, No. 
1
,
1994
, pp. 
84
91
, https://doi.org/10.1080/00401706.1994.10485403
33.
Fausett
,
L. V.
,
Applied Numerical Analysis Using MATLAB
,
Prentice Hall
,
Upper Saddle River, NJ
,
1999
, 596p.
34.
Zehna
,
P. W.
, “
Invariance of Maximum Likelihood Estimation
,”
Ann. Math. Stat.
, Vol. 
37
, No. 
3
,
1966
, p. 744, https://doi.org/10.1214/aoms/1177699475
35.
Efron
,
B.
and
Hinkley
,
D. V.
, “
Assessing the Accuracy of the Maximum Likelihood Estimator: Observed Versus Expected Fisher Information
,”
Biometrika
, Vol. 
65
, No. 
3
,
1978
, pp. 
457
483
, https://doi.org/10.1093/biomet/65.3.457
36.
Soliman
,
A. A.
, “
Estimation of Parameters of Life from Progressively Censored Data Using Burr-XII Model
,”
IEEE Trans. Reliab.
, Vol. 
54
, No. 
1
,
2005
, pp. 
34
42
, https://doi.org/10.1109/TR.2004.842528
37.
Lawless
,
J. F.
,
Statistical Models and Methods for Lifetime Data
, 2nd ed.,
John Wiley & Sons Inc.
,
Hoboken, NJ
,
2002
, 664p.
38.
Balakrishnan
,
N.
and
Aggarwala
,
R.
,
Progressive Censoring: Theory, Methods and Applications
,
Birkhäuser
,
Basel, Switzerland
,
2000
, 248p.
This content is only available via PDF.
You do not currently have access to this content.