Abstract

Using laser wavelength modulation spectroscopy (LWMS), a rapid detection method to determine the oxygen contents in glass medicine bottles with an open single path and short optical distance was proposed. It is widely acknowledged that temperature changes influence the gas line strength, the full width at half maximum (FWHM) of absorption parameters, and the density of gas molecules. As a direct consequence, these factors affect the detection accuracy of gas concentrations. Two methods of temperature compensation and correction were proposed to address this problem: one method uses a theoretical compensation of scale factors based on the relationship between various parameters in the HITRAN 2012 database (Harvard-Smithsonian Center for Astrophysics, Cambridge, MA), and the second method uses the compensation of an experimental correction function based on the relationship between temperature and harmonic intensity measurements. Furthermore, the two methods were integrated into the regression equations for the peak value of the secondary harmonics and the gas concentration for quantitative predictions. At different temperatures (ranging from 276–316 K), glass medicine bottles with oxygen concentrations of 21 % were tested to obtain predictive values based on direct concentration evaluation by the two methods. The experimental results show that the predicated root mean square errors after theoretical and experimental correction are 0.0024 and 0.0058, respectively 80.33 % and 52.46 % less than that obtained through direct concentration evaluation. This validates the effectiveness of the two proposed methods, which can further improve the accuracy and stability for detecting gas concentration using LWMS.

References

1.
Goldenstein
,
C. S.
,
Almodóvar
,
C. A.
,
Jeffries
,
J. B.
,
Hanson
,
R. K.
, and
Brophy
,
C. M.
, “
High-Bandwidth Scanned-Wavelength-Modulation Spectroscopy Sensors for Temperature and H2O in a Rotating Detonation Engine
,”
Meas. Sci. Technol.
, Vol. 
25
, No. 
10
,
2014
, 105104, https://doi.org/10.1088/0957-0233/25/10/105104
2.
Werle
,
P. W.
,
Scheumann
,
B.
, and
Schandl
,
J.
, “
Real-Time Signal-Processing Concepts for Trace-Gas Analysis by Diode-Laser Spectroscopy
,”
Opt. Eng.
, Vol. 
33
, No. 
9
,
1994
, pp. 
3093
3105
, https://doi.org/10.1117/12.178262
3.
Frish
,
M. B.
,
Wainner
,
R. T.
,
Laderer
,
M. C.
,
Green
,
B. D.
, and
Allen
,
M. G.
, “
Standoff and Miniature Chemical Vapor Detectors Based on Tunable Diode Laser Absorption Spectroscopy
,”
IEEE Sens. J.
, Vol. 
10
, No. 
3
,
2010
, pp. 
639
646
, https://doi.org/10.1109/JSEN.2009.2038536
4.
Neethu
,
S.
,
Verma
,
R.
,
Kamble
,
S. S.
,
Radhakrishnan
,
J. K.
,
Krishnapur
,
P. P.
, and
Padaki
,
V. C.
, “
Validation of Wavelength Modulation Spectroscopy Techniques for Oxygen Concentration Measurement
,”
Sens. Actuators, B
, Vol. 
192
,
2014
, pp. 
70
76
, https://doi.org/10.1016/j.snb.2013.10.070
5.
Li
,
J.
,
Parchatka
,
U.
, and
Fischer
,
H.
, “
Applications of Wavelet Transform to Quantum Cascade Laser Spectrometer for Atmospheric Trace Gas Measurements
,”
Appl. Phys. B
, Vol. 
108
, No. 
4
,
2012
, pp. 
951
963
, https://doi.org/10.1007/s00340-012-5158-7
6.
Bolshov
,
M. A.
,
Kuritsyn
,
Y. A.
, and
Romanovskii
,
Y. V.
, “
Tunable Diode Laser Spectroscopy as a Technique for Combustion Diagnostics
,”
Spectrochim. Acta
, Part B, Vol. 
106
,
2015
, pp. 
45
66
, https://doi.org/10.1016/j.sab.2015.01.010
7.
Kluczynski
,
P.
,
Gustafsson
,
J.
,
Lindberg
,
Å. M.
, and
Axner
,
O.
, “
Wavelength Modulation Absorption Spectrometry — An Extensive Scrutiny of the Generation of Signals
,”
Spectrochim. Acta, Part B
, Vol. 
56
, No. 
8
,
2001
, pp. 
1277
1354
, https://doi.org/10.1016/S0584-8547(01)00248-8
8.
Cai
,
T.
,
Jia
,
H.
,
Wang
,
G.
,
Chen
,
W.
, and
Gao
,
X.
, “
A Sensor for Measurements of Temperature and Water Concentration Using a Single Tunable Diode Laser Near 1.4 μm
,”
Sens. Actuators, A
, Vol. 
152
, No. 
1
,
2009
, pp. 
5
12
, https://doi.org/10.1016/j.sna.2009.03.004
9.
Meng
,
Y. X.
,
Liu
,
T.
,
Liu
,
K.
,
Jiang
,
J. F.
,
Wang
,
R. R.
,
Wang
,
T.
, and
Hu
,
H. F.
, “
A Modified Empirical Mode Decomposition Algorithm in TDLAS for Gas Detection
,”
IEEE Photonics J.
, Vol. 
6
, No. 
6
,
2014
, 6803209, https://doi.org/10.1109/JPHOT.2014.2368785
10.
Zhu
,
X. F.
,
Lin
,
Z. X.
,
Liu
,
L. M.
,
Shao
,
J. Y.
, and
Gong
,
W.
, “
Influence of Temperature and Pressure on Absorption Spectrum of Around 1.6 μm for Differential Absorption Lidar
,”
Acta Phys. Sin.
, Vol. 
63
, No. 
17
,
2014
, 174203.
11.
Bolshov
,
M. A.
,
Kuritsyn
,
Y. A.
,
Liger
,
V. V.
,
Mironenko
,
V. R.
,
Leonov
,
S. B.
, and
Yarantsev
,
D. A.
, “
Measurements of the Temperature and Water Vapor Concentration in a Hot Zone by Tunable Diode Laser Absorption Spectrometry
,”
Appl. Phys. B
, Vol. 
100
, No. 
2
,
2010
, pp. 
397
407
, https://doi.org/10.1007/s00340-009-3882-4
12.
Shu
,
X. W.
,
Zhang
,
Y. J.
,
Kan
,
R. F.
,
Cui
,
Y. B.
,
He
,
Y.
,
Zhang
,
S.
,
Geng
,
H.
, and
Liu
,
W. Q.
, “
An Investigation of Temperature Compensation of HCL Gas Online Monitoring Based on TDLAS Method
,”
Spectrosc. Spectr. Anal.
, Vol. 
30
, No. 
5
,
2010
, pp. 
1352
1356
.
13.
Chen
,
Z.
,
Tao
,
S. H.
,
Du
,
X. J.
, and
Hou
,
X. J.
, “
Accurate Calculation of Spectral Line Profiles by Considering Influence of Varying Pressure and Temperature in a Gas
,”
Spectrosc. Spectr. Anal.
, Vol. 
33
, No. 
2
,
2013
, pp. 
312
315
.
This content is only available via PDF.
You do not currently have access to this content.