Abstract

The existing method of selecting Superpave trial aggregate blends is deterministic and is based on trial-and-error. The primary purpose of this article is to develop a stochastic optimization model that includes the uncertainties of individual aggregate gradations, primary aggregate (PA) properties, and related specifications. The model can directly determine three different trial blends: (1) a blend close to the minimum specification limits, (2) a blend not close to the specification limits or to the restricted zone (RZ), and (3) a blend close to the maximum specification limits and to the RZ. The constraints of the model include gradation-control specifications, RZ limits, PA properties, and special and unity constraints. The PA properties include coarse aggregate fractured faces, fine aggregate angularity, sand equivalent, and flat and elongated particles. The uncertainty is formulated to ensure that the trial blends satisfy model constraints for a specified confidence level. A binary variable is used to allow the designer to produce a blend that passes below, above, or through the RZ. Application of the model is illustrated using a numerical example. The proposed model, which improves the reliability of trial blends and the efficiency of their selection, should be of interest to practitioners and researchers.

References

1.
Singh
,
V. P.
,
Jain
,
S. K.
, and
Tyagi
,
A.
,
Risk and Reliability Analysis: A Handbook for Civil and Environmental Engineers
,
American Society of Civil Engineers
,
Reston, VA
,
2013
, 800p.
2.
Hughes
,
I.
and
Hase
,
T.
,
Measurements and Their Uncertainties: A Practical Guide to Modern Error Analysis
,
Oxford University Press
,
Oxford, England
,
2010
, 160p.
3.
Federal Highway Administration “
A Review of Aggregate and Asphalt Mixture Specific Gravity Measurements and Their Impacts on Asphalt Mix Design Properties and Mix Acceptance
,” Report FHWA-HIF-11-033, US Department of Transportation, Washington, DC,
2010
, 39p.
4.
Han
,
D.
,
Kaito
,
K.
,
Kobayashi
,
K.
, and
Aoki
,
K.
Performance Evaluation of Advanced Pavement Materials by Bayesian Markov Mixture Hazard Model
,”
KSCE J. Civ. Eng.
, Vol. 
20
, No. 
2
,
2016
, pp. 
729
737
, https://doi.org/10.1007/s12205-015-0375-3
5.
Castillo
,
D.
,
Caro
,
S.
,
Darabi
,
M.
, and
Masad
,
E.
, “
Studying the Effect of Microstructural Properties on the Mechanical Degradation of Asphalt Mixtures
,”
Constr. Build. Mater.
, Vol. 
93
,
2015
, pp. 
70
83
, https://doi.org/10.1016/j.conbuildmat.2015.05.108
6.
Eddhahak-Ouni
,
A.
,
Dony
,
A.
, and
Colin
,
J.
, “
Prediction of the Rutting Potential of Bituminous Binders Using a Stochastic Approach
,”
Road Mater. Pavement Des.
, Vol. 
13
, No. 
1
,
2012
, pp. 
38
48
, https://doi.org/10.1080/14680629.2011.644061
7.
Praticò
,
F. G.
and
Casciano
,
A.
, “
Variability of HMA Characteristics and its Influence on Pay Adjustment
,”
J. Civ. Eng. and Manage.
, Vol. 
21
, No. 
1
,
2015
, pp. 
119
130
, https://doi.org/10.3846/13923730.2013.802713
8.
Sadek
,
H.
,
Masad
,
E.
,
Al-Khalid
,
H.
, and
Sirin
,
O.
Probabilistic Analysis of Fatigue Life for Asphalt Mixtures Using the Viscoelastic Continuum Damage Approach
,”
Constr. Build. Mater.
, Vol. 
126
,
2016
, pp. 
227
244
, https://doi.org/10.1016/j.conbuildmat.2016.09.029
9.
Bhattacharjee
,
S.
, “
Incorporating Uncertainties in Flexible Pavement Design
,”
Proc. Inst. Civ. Eng. – Transp.
, Vol. 
170
, No. 
3
,
2017
, pp. 
158
170
.
10.
Caro
,
S.
,
Castillo
,
D.
, and
Sánchez-Silva
,
M.
, “
Methodology to Model the Uncertainty of Material Properties in Asphalt Pavements
,”
J. Mater. Civ. Eng.
, Vol. 
26
, No. 
3
,
2014
, pp. 
440
448
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000841
11.
Easa
,
S. M.
,
Shalaby
,
A.
, and
Abd El Halim
,
A. O.
, “
Reliability-Based Model for Predicting Pavement Thermal Cracking
,”
J. Transp. Eng.
, Vol. 
122
, No. 
5
,
1996
, pp. 
374
380
, https://doi.org/10.1061/(ASCE)0733-947X(1996)122:5(374)
12.
Retherford
,
J. Q.
, “
Management of Uncertainty for Flexible Pavement Design Utilizing Analytical and Probabilistic Methods
,” Ph.D. dissertation,
Vanderbilt University
, Nashville, TN,
2012
.
13.
Kennedy
,
T. W.
,
Huber
,
G. A.
,
Harrigan
,
E. T.
,
Cominsky
,
R. J.
,
Hughes
,
C. S.
,
Von Quintus
,
H.
, and
Moulthrop
,
J. S.
,
Superior Performing Asphalt Pavements (Superpave): The Product of the SHRP Asphalt Research Program, TRB, Report No. SHRP-A-410
,
Strategic Highway Research Program
,
Washington, DC
,
1994
, 170p.
14.
Brown
,
E. R.
,
Kandhal
,
P. S.
,
Roberts
,
F. L.
,
Kim
,
Y. R.
,
Lee
,
D-Y.
, and
Kennedy
,
T. W.
,
Hot Mix Asphalt Materials, Mixture Design, and Construction
,
National Asphalt Pavement Association (NAPA)
,
Lanham, MD
,
2009
, 585p.
15.
Prowell
,
B. D.
and
Brown
,
E. R.
, Superpave Mix Design: Verifying Gyration Levels in the N(Design) Table, National Cooperative Highway Research Program Report No. 573,
Transportation Research Board
,
Washington, DC
,
2007
, 74p.
16.
Christensen
,
D. W.
, Jr.
and
Bonaquist
,
R. F.
, Volumetric Requirements for Superpave Mix Design, National Cooperative Highway Research Program Report No. 567,
Transportation Research Board
,
Washington, DC
,
2006
, 46p.
17.
Kandhal
,
P. S.
and
Cooley
,
L. A.
, Jr.
, The Restricted Zone in the Superpave Aggregate Gradation Specification, National Cooperative Highway Research Program Report No. 464,
Transportation Research Board
,
Washington, DC
,
2001
, 45p.
18.
Hossain
,
M.
and
Fager
,
G.
, Superpave Volumetric Mixture Design and Analysis Handbook, Vol. 
1
,
Kansas Department of Transportation
,
Topeka, KS
,
2016
.
19.
Transportation Research Board A Manual for Design of Hot-Mix Asphalt with Commentary, National Cooperative Highway Research Program Report No. 673,
Transportation Research Board
,
Washington, DC
,
2011
, 273p.
20.
Federal Highway Administration “
Long-Term Pavement Performance Bind Online (Product Brief)
,” FHWA-HRT-17-009, Federal Highway Administration, Washington, DC,
2016
, 4p.
21.
Zaniewski
,
J. P.
and
Padula
,
M.
,
Automation of the Superpave Mix Design Process for the West Virginia Division of Highways
,
Federal Highway Administration
,
Washington, DC
,
2003
, 154p.
22.
Asphalt Institute
Asphalt Mix Design Methods
,
Asphalt Institute
,
Lexington, KY
,
2015
, 188p.
23.
Easa
,
S. M.
, “
Trade-Off of Gradation and Cost Requirements in Aggregate Blending
,”
Cem. Concr. Agg.
, Vol. 
7
, No. 
1
,
1985
, pp. 
29
36
, https://doi.org/10.1520/CCA10041J
24.
McDaniel
,
R.
,
Soleymani
,
H.
, and
Shah
,
A.
, Use of Reclaimed Pavement (RAP) under Superpave Specifications, Final Report,
North Central Superpave Center
,
West Lafayette, IN
,
2002
, 79p.
25.
McDaniel
,
R.
and
Anderson
,
R. M.
, Recommended Use of Reclaimed Asphalt Pavement in the Superpave Mix Design Method: Technician’s Manual, National Cooperative Highway Research Program Report No. 452,
Transportation Research Board
,
Washington, DC
,
2001
, 58p.
26.
Swamy
,
A. K.
and
Das
,
A.
, “
Optimal Proportioning for Hot Recycled Mix Design under Superpave Mix Design Consideration
,”
Can. J. Civ. Eng.
, Vol. 
36
, No. 
9
,
2009
, pp. 
1470
1477
, https://doi.org/10.1139/L09-096
27.
Federal Highway Administration “
Superpave Mixture Design Guide, WesTrack Forensic Team Consensus Report
,” Federal Highway Administration,
Washignton, DC
,
2001
, 18p.
28.
Vavrik
,
W. R.
,
Huber
,
G. A.
,
Pine
,
W. J.
,
Carpenter
,
S. H.
, and
Bailey
,
R.
Bailey Method for Gradation Selection in HMA Mixture Design
,” Transportation Research Circular E-C044,
Transportation Research Board, National Research Council
,
Washington, DC
,
2002
, 39p.
29.
Vavrik
,
W. R.
,
Pine
,
W. J.
,
Huber
,
G.
,
Carpenter
,
S. H.
, and
Bailey
,
R.
, “
The Bailey Method of Gradation Evaluation: The Influence of Aggregate Gradation and Packing Characteristics on Voids in the Mineral Aggregate
,”
J. Assoc. Asphalt Paving Tech.
, Vol. 
70
,
2001
, pp. 
132
175
.
30.
Mohammad
,
L. N.
and
Shamsi
,
K. A.
, “
A Look at the Bailey Method and Locking Point Concept in Superpave Mixture Design
,” Transportation Research Circular E-C124, Transportation Research Board, National Research Council, Washington, DC,
2007
, pp.
12
32
.
31.
Easa
,
S. M.
, “
New Design Method of Asphalt Mixtures Considering Uncertainty
,”
J. Test. Eval.
, Vol. 
47
, No. 
1
,
2019
, 22p., https://doi.org/10.1520/JTE20170353
32.
Easa
,
S. M.
, “
Evaluation of Superpave Design Aggregate Structure Considering Uncertainty: II. Evaluation of Trial Blends
,”
J. Test. Eval.
(in press).
33.
Zaniewski
,
J. P.
and
Kanneganti
,
V.
,
Comparison of 19 mm Superpave and Marshall Base II Mixes in West Virginia
,
West Virginia Division of Highways
,
Charleston, WV
,
2003
, 78p.
34.
Easa
,
S. M.
and
Can
,
E. K.
, “
Stochastic Priority Model for Aggregate Blending
,”
J. Constr. Eng. Manage.
, Vol. 
111
, No. 
4
,
1985
, pp. 
358
373
, https://doi.org/10.1061/(ASCE)0733-9364(1985)111:4(358)
35.
Kikuchi
,
S.
,
Kronprasert
,
N.
, and
Easa
,
S. M.
, “
Aggregate Blending Using Fuzzy Optimization
,”
J. Constr. Eng. Manage.
, Vol. 
138
. No. 
12
,
2012
, pp. 
1411
1420
, https://doi.org/10.1061/(ASCE)CO.1943-7862.0000557
36.
Benjamin
,
J. R.
and
Cornell
,
C. A.
,
Probability, Statistics, and Decision for Civil Engineers
,
Dover Publications
,
New York, NY
,
2014
, 704p.
37.
Harman
,
T.
,
D’Angelo
,
J.
, and
Bukowski
,
J.
,
Superpave Asphalt Mixture Design Workshop Workbook
,
Federal Highway Administration
,
Washington, DC
,
1999
, 96p.
38.
Transportation Research Board “
Superpave: Performance by Design
,” Final Report of the TRB Superpave Committee, Washington, DC,
2005
, 56p.
This content is only available via PDF.
You do not currently have access to this content.