Abstract

Vehicles are being equipped with more and more smart devices, which help the driver in his tasks. Alongside the trend to more and more autonomous vehicles emerges the possibility of making vehicles that move together as a platoon, which can be defined as a spatio-temporal organization of a set of vehicles based on a specific predetermined geometrical configuration. Basically, there are two main approaches for performing platoon control and these depend on the reference frame used (local or global). Even if the literature about platoon control is abundant, the most commonly used metrics are only tied to the stability of the platoon, that is, to the lateral and longitudinal distances between vehicles. However, these metrics are sufficient enough for a first evaluation of one algorithm; a deeper evaluation of a platoon control solution requires more well-defined metrics and perturbations that allow for the testing of algorithms with various parametrized conditions. The goal of this article is to present definitions of metrics, perturbations, spatial configurations, and scenarios that are aimed at helping scientists in the field to determine strong and precise evaluations of their platoon control algorithms. The work presented in this article stems directly from thinking performed during the institutional projects in which the authors have been involved and also takes inspiration from numerous articles on the subject and experiments made both in simulation and with real vehicles.

References

1.
Hedrick
,
J. K.
,
Tomizuka
,
M.
, and
Varaiya
,
P.
, “
Control Issues in Automated Highway Systems
,”
IEEE Control Syst. Mag.
, Vol. 
14
, No. 
6
,
1994
, pp. 
21
32
, https://doi.org/10.1109/37.334412
2.
Chan
,
E.
,
Gilhead
,
P.
,
Jelínek
,
P.
, and
Krejei
,
P.
, “
Sartre Cooperative Control of Fully Automated Platoon Vehicles
,” presented at the
18th World Congress on Intelligent Transport Systems
, Orlando, FL, Oct. 16–20,
2011
,
Intelligent Transportation Society of America
,
Washington, DC
, 10p.
3.
Guillet
,
A.
,
Lenain
,
R.
,
Thuilot
,
B.
, and
Martinet
,
P.
, “
Adaptable Robot Formation Control: Adaptive and Predictive Formation Control of Autonomous Vehicles
,”
IEEE Rob. Autom. Mag.
, Vol. 
21
, No. 
1
,
2014
, pp. 
28
39
, https://doi.org/10.1109/MRA.2013.2295946
4.
Guillet
,
A.
,
Lenain
,
R.
,
Thuilot
,
B.
, and
Berducat
,
M.
, “
Longitudinal Control of Mobile Robots in Formation during Path Tracking
,” presented at the
Fourth International Conference on Machine Control and Guidance
, Braunschwieg, Germany, March 19–20,
2014
,
Institute for Mobile Machinery and Commercial Vehicles
,
Braunschweig, Germany
, pp. 
118
127
.
5.
Martinet
,
P.
,
Thuilot
,
B.
, and
Bom
,
J.
, “
Autonomous Navigation and Platooning Using a Sensory Memory
,” presented at the
International IEEE Conference on Intelligent Robots and Systems, IROS’06
, Beijing, China, Oct. 9–15,
2006
,
IEEE
,
Piscataway, NJ
.
6.
Hamouda
,
O.
,
Kaâniche
,
M.
, and
Kanoun
,
K.
, “
Dependability Modeling and Evaluation of an Automated Highway System
,”
Hal Archives
,
Lyon, France
,
2010
.
7.
Avanzini
,
P.
,
Thuilot
,
B.
, and
Martinet
,
P.
, “
Manual Convoying of Automated Urban Vehicles Relying on Monocular Vision
,” presented at the
2012 IEEE Intelligent Vehicles Symposium
, Alcala de Henares, Spain, June 3–7,
2012
,
IEEE
,
Piscataway, NJ
, pp. 
19
24
.
8.
Avanzini
,
P.
,
Royer
,
E.
,
Thuilot
,
B.
, and
Derutin
,
J.-P.
, “
Using Monocular Visual SLAM to Manually Convoy a Fleet of Automatic Urban Vehicles
,” presented at the
IEEE International Conference on Robotics and Automation (ICRA 2013)
, Karlsruhe, Germany, May 6–10, 2013,
IEEE
,
Piscataway, NJ
, pp. 
3219
3224
.
9.
Jia
,
D.
,
Lu
,
K.
,
Wang
,
J.
,
Zhang
,
X.
, and
Shen
,
X.
, “
A Survey on Platoon-Based Vehicular Cyber-Physical Systems
,”
IEEE Commun. Surv. Tutorials
, Vol. 
18
, No. 
1
,
2016
, pp. 
263
284
, https://doi.org/10.1109/COMST.2015.2410831
10.
El-Zaher
,
M.
,
Gechter
,
F.
,
Gruer
,
P.
, and
Hajjar
,
M.
, “
A New Linear Platoon Model Based on Reactive Multi-agent Systems
,” presented at the
IEEE International Conference on Tools with Artificial Intelligence ICTAI
, Boca Raton, FL, Nov. 7–9,
2011
,
IEEE
,
Piscataway, NJ
, pp. 
898
899
.
11.
Scheuer
,
A.
,
Simonin
,
O.
, and
Charpillet
,
F.
, “
Safe Longitudinal Platoons of Vehicles without Communication
,” presented at the
2009 IEEE International Conference on Robotics and Automation
, Kobe, Japan, May 12–17,
2009
,
IEEE
,
Piscataway, NJ
, pp. 
70
75
.
12.
Bouchaala
,
Y.
,
Marouf
,
M.
,
Abualhoul
,
M.
,
Pollard
,
E.
,
Shagdar
,
O.
, and
Nashashibi
,
F.
, “
WAVE Low Latency Video Streaming for Platooning Safety Real-Time Application
,” presented at the
2013 IEEE Vehicular Networking Conference
, Boston, MA, Dec. 16–18,
2013
,
IEEE
,
Piscataway, NJ
, 2p.
13.
Abualhoul
,
M.
,
Marouf
,
M.
,
Shagdar
,
O.
, and
Nashashibi
,
F.
, “
Platooning Control Using Visible Light Communications: A Feasibility Study
,” presented at the
16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013)
, The Hague, the Netherlands, Oct. 6–9, 2013,
IEEE
,
Piscataway, NJ
, pp. 
1535
1540
.
14.
Dafflon
,
B.
,
Gechter
,
F.
,
Gruer
,
P.
, and
Koukam
,
A.
, “
Vehicle Platoon and Obstacle Avoidance: A Reactive Agent Approach
,”
IET Intel. Transport Syst.
, Vol. 
7
, No. 
3
,
2013
, pp. 
257
264
, https://doi.org/10.1049/iet-its.2011.0125
15.
Yazbeck
,
J.
,
Scheuer
,
A.
, and
Charpillet
,
F.
, “
Decentralized Near-to-Near Approach for Vehicle Platooning Based on Memorization and Heuristic Search
,” presented at the
2014 IEEE International Conference on Robotics and Automation (ICRA)
, Hong Kong, China, May 31–June 7,
2014
,
IEEE
,
Piscataway, NJ
, pp. 
631
638
.
16.
Yazbeck
,
J.
,
Scheuer
,
A.
,
Simonin
,
O.
, and
Charpillet
,
F.
, “
Improving Near-to-Near Lateral Control of Platoons without Communication
,” presented at the
2011 IEEE-RSJ International Conference on Intelligent Robots and Systems
, San Francisco, CA, Sept. 25–30,
2011
,
IEEE
,
Piscataway, NJ
, pp. 
4103
4108
.
17.
El Zaher
,
M.
,
Gechter
,
F.
,
Hajjar
,
M.
, and
Gruer
,
P.
, “
An Interaction Model for a Local Approach to Vehicle Platoons
,”
Int. J. Veh. Auton. Syst.
, Vol. 
13
, No. 
2
,
2016
, pp. 
91
113
, https://doi.org/10.1504/IJVAS.2016.078760
18.
Guillet
,
A.
,
Lenain
,
R.
, and
Thuilot
,
B.
, “
Off-Road Path Tracking of a Fleet of WMR with Adaptive and Predictive Control
,” presented at the
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Tokyo, Japan, Nov. 3–7,
2013
,
IEEE
,
Piscataway, NJ
, pp. 
2855
2861
.
19.
Swaroop
,
D. V. A. H. G.
, “
String Stability of Interconnected Systems: An Application to Platooning in Automated Highway Systems
,” Ph.D. thesis,
University of California at Berkeley
, Berkeley, CA,
1994
.
20.
Liebgott
,
I.
and
Vizinho-Coutry
,
A.
, “
Integration of the Model-Based Design - Industrial Approach - for Teaching Engineering Science
,” presented at the
2016 IEEE Global Engineering Education Conference (EDUCON)
, Abu Dhabi, United Arab Emirates, April 10–13,
2016
,
IEEE
,
Piscataway, NJ
, pp. 
697
701
.
21.
McCormack
,
L. M.
,
Seller
,
S.
,
White
,
R. D.
,
Hutchison
,
R.
, and
Hooper
,
P. W.
, “
Railway Electrical Systems Integration - Practical Application of the ‘V’ Cycle for Electromagnetic Compatibility (EMC)
,” presented at the
2006 IET Seminar on EMC in Railways
, Birmingham, United Kingdom, Sept. 28,
2006
,
IET
,
London, United Kingdom
, pp. 
119
126
.
22.
Hardt
,
M.
,
Mackenthun
,
R.
, and
Bielefeld
,
J.
, “
Integrating ECUs in Vehicles—Requirements Engineering in Series Development
,” presented at the
IEEE Joint International Conference on Requirements Engineering
, Essen, Germany, Sept. 9–13,
2002
,
IEEE
,
Piscataway, NJ
, pp. 
227
236
.
23.
Maier
,
R.
,
Knowledge Management Systems: Information and Communication Technologies for Knowledge Management
, 3rd ed.,
Springer-Verlag
,
Berlin, Germany
,
2007
, 720p.
24.
Schaefer
,
F.
,
Kriesten
,
R.
,
Chrenko
,
D.
, and
Gechter
,
F.
, “
No Need to Learn from Each Other?—Potentials of Knowledge Modeling in Autonomous Vehicle Systems Engineering Towards New Methods in Multidisciplinary Contexts
,” presented at the
2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC)
, Funchal, Portugal, June 27–29,
2017
,
IEEE
,
Piscataway, NJ
, pp. 
462
468
.
25.
Shahbakhti
,
M.
,
Li
,
J.
, and
Hedrick
,
J. K.
, “
Early Model-Based Verification of Automotive Control System Implementation
,” presented at the
2012 American Control Conference (ACC)
, Montreal, Canada, June 27–29,
2012
,
IEEE
,
Piscataway, NJ
, pp. 
3587
3592
.
26.
Contet
,
J-M.
,
Gechter
,
F.
,
Gruer
,
P.
, and
Koukam
,
A.
, “
Reactive Multi-agent Approach to Local Platoon Control: Stability Analysis and Experimentations
,”
Int. J. Intell. Syst. Technol. Appl.
, Vol. 
10
, No. 
3
,
2011
, pp. 
231
249
.
27.
El-Zaher
,
M.
,
Contet
,
J.-M.
,
Gruer
,
P.
,
Gechter
,
F.
, and
Koukam
,
A.
, “
Compositional Verification for Reactive Multi-agent Systems Applied to Platoon Non-collision Verification
,”
Stud. Inform. Universalis
, Vol. 
10
, No. 
3
,
2012
, pp. 
119
141
.
28.
Leipholz
,
H.
,
Stability Theory: An Introduction to the Stability of Dynamic Systems and Rigid Bodies
, 2nd ed.,
Wiley
,
Hoboken, NJ
,
1987
, 370p.
29.
Lyapunov
,
A. M.
, “
The General Problem of Stability of the Motion
,”
Int. J. Control
, Vol. 
55
, No. 
3
,
1992
, pp. 
531
534
, https://doi.org/10.1080/00207179208934253
30.
Garrard
,
W. L.
and
Caudill
,
R. J.
, “
Dynamic Behavior of Strings of Automated Transit Vehicles
,”
SAE Trans.
, Vol. 
86
,
1977
, pp. 
1365
1378
.
31.
Liang
,
C-Y.
and
Peng
,
H.
, “
Optimal Adaptive Cruise Control with Guaranteed String Stability
,”
Veh. Syst. Dyn.
, Vol. 
32
, Nos. 
4–5
,
1999
, pp. 
313
330
, https://doi.org/10.1076/vesd.32.4.313.2083
32.
Besselink
,
B.
and
Johansson
,
K. H.
, “
String Stability and a Delay-Based Spacing Policy for Vehicle Platoons Subject to Disturbances
,”
IEEE Trans. Autom. Control
, Vol. 
62
, No. 
9
,
2017
, pp. 
4376
4391
, https://doi.org/10.1109/TAC.2017.2682421
33.
Tessier
,
C.
,
Debain
,
C.
,
Chapuis
,
R.
, and
Chausse
,
F.
, “
Map Aided Localization and Vehicle Guidance Using an Active Landmark Search
,”
Inf. Fusion
, Vol. 
11
, No. 
3
,
2010
, pp. 
283
296
, https://doi.org/10.1016/j.inffus.2009.09.006
34.
Hach
,
O.
,
Lenain
,
R.
,
Thuilot
,
B.
, and
Martinet
,
P.
, “
Avoiding Steering Actuator Saturation in Off-Road Mobile Robot Path Tracking via Predictive Velocity Control
,” presented at the
2011 IEEE/RJS International Conference on Intelligent Robot and Systems
, San Francisco, CA, Sept. 25–30,
2011
,
IEEE
,
Piscataway, NJ
, pp. 
4072
4077
.
35.
Sun
,
Z.
,
Bebis
,
G.
, and
Miller
,
R.
, “
On-Road Vehicle Detection: A Review
,”
IEEE Trans. Pattern Anal. Mach. Intell.
, Vol. 
28
, No. 
5
,
2006
, pp. 
694
711
, https://doi.org/10.1109/TPAMI.2006.104
36.
Uzcategui
,
R. A.
,
De Sucre
,
A. J.
, and
Acosta-Marum
,
G.
, “
WAVE: A Tutorial
,”
IEEE Commun. Mag.
, Vol. 
47
, No. 
5
,
2009
, pp. 
126
133
, https://doi.org/10.1109/MCOM.2009.4939288
37.
Lee
,
H.
and
Tomizuka
,
M.
, “
Adaptive Vehicle Traction Force Control for Intelligent Vehicle Highway Systems (IVHSs)
,”
IEEE Trans. Ind. Electron.
, Vol. 
50
, No. 
1
,
2003
, pp. 
37
47
, https://doi.org/10.1109/TIE.2002.807677
38.
Baskar
,
L. D.
,
De Schutter
,
B.
,
Hellendoorn
,
J.
, and
Papp
,
Z.
, “
Traffic Control and Intelligent Vehicle Highway Systems: A Survey
,”
IET Intel. Transport Syst.
, Vol. 
5
, No. 
1
,
2011
, pp. 
38
52
, https://doi.org/10.1049/iet-its.2009.0001
39.
El-Zaher
,
M.
,
Contet
,
J.-M.
,
Gechter
,
F.
, and
Gruer
,
P.
, “
Reconfigurable and Adaptable Urban Transportation Systems: The Platoon Solution
,” presented at the
IET Conference on Smart and Sustainable City (ICSSC 2011)
, Shanghai, China, July 6–8, 2011,
IET
,
London, United Kingdom
, pp. 
1
5
.
40.
Lenain
,
R.
,
Thuilot
,
B.
,
Guillet
,
A.
, and
Benet
,
B.
, “
Accurate Target Tracking Control for a Mobile Robot: A Robust Adaptive Approach for Off-Road Motion
,” presented at the
2014 IEEE International Conference on Robotics and Automation (ICRA)
, Hong Kong, China, May 31–June 7,
2014
,
IEEE
,
Piscataway, NJ
, pp. 
2652
2657
.
41.
Avanzini
,
P.
,
Thuilot
,
B.
, and
Martinet
,
P.
, “
Urban Vehicle Platoon Using Monocular Vision: Scale Factor Estimation
,” presented at the
2010 Eleventh International Conference on Control, Automation, Robotics and Vision
, Singapore, Dec. 7–10,
2010
,
IEEE
,
Piscataway, NJ
, pp. 
1803
1808
.
42.
Department of the Army
Field Manual 17-98 Scout Platoon
,
United States Department of the Army
,
Washington, DC
,
1999
, 420p.
43.
El Zaher
,
M.
,
Contet
,
J.-M.
,
Gechter
,
F.
, and
Koukam
,
A.
, “
Echelon Platoon Organisation: A Distributed Approach Based on 2-Spring Virtual Links
,” presented at the
15th International Conference on Artificial Intelligence: Methodology, Systems, Applications (AIMSA)
, Varna, Bulgaria, Sept. 12–15,
2012
,
Springer-Verlag
,
Berlin, Germany
, pp. 
246
255
.
44.
Gechter
,
F.
,
Contet
,
J.-M.
,
Galland
,
S.
,
Lamotte
,
O.
, and
Koukam
,
A.
, “
Virtual Intelligent Vehicle Urban Simulator: Application to Vehicle Platoon Evaluation
,”
Simul. Modell. Pract. Theory
, Vol. 
24
,
2012
, pp. 
103
114
, https://doi.org/10.1016/j.simpat.2012.02.001
45.
Dafflon
,
B.
,
Guériau
,
M.
, and
Gechter
,
F.
, “
VIPS: A Simulator for Platoon System Evaluation
,”
Simul. Modell. Pract. Theory
, Vol. 
77
,
2017
, pp. 
157
176
, https://doi.org/10.1016/j.simpat.2017.05.008
This content is only available via PDF.
You do not currently have access to this content.