Abstract

This study aimed to determine the gamma shielding parameters of an Erbium Zinc Tellurite Glass System. The mass attenuation coefficients of Erbium Zinc Tellurite Glass System xEr2O3:20ZnO : (80-x) TeO2 were computed using Monte Carlo simulation at photon energies 20, 30, and 40 keV and 60, 356, 662, 1,173, 1,274, and 1,332 keV. The half-value layer thickness was calculated using the mass attenuation coefficients. The obtained results were compared to standard XCOM data and found comparable. It was found that the erbium zinc tellurite glass with a higher content of erbium is superior shielding material to other glasses. Thus, the validation of a generated Monte Carlo N-Particle Transport Code System-Extended simulation setup has been provided. It can be concluded that results of the present investigation would be very useful for applications of medical diagnostic and nuclear technology.

References

1.
El-Khayatt
,
A. M.
,
Ali
,
A. M
, and
Singh
,
V. P.
, “
Photon Attenuation Coefficients of Heavy-Metal Oxide Glasses by MCNP Code, XCOM Program and Experimental Data: A Comparison Study
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
, Vol. 
735
,
2014
, pp. 
207
212
, https://doi.org/10.1016/j.nima.2013.09.027
2.
Sayyed
,
M. I.
,
Dong
,
M. G.
,
Zaid
,
M. H. M.
,
Matori
,
K. A.
,
Sidek
,
H. A. A.
, and
Singh
,
V. P.
, “
Effect of Bismuth in Lead Germanate Glass System on Shielding Properties for Development of Gamma-Rays Shielding Materials
,”
Digest J. Nanomater. Biostructures
, Vol. 
13
, No. 
1
,
2018
, pp. 
1
6
.
3.
Stanworth
,
J. E.
,
J. Soc. Glass Technol.
Vol. 
36
,
1952
, pp. 
217
241
.
4.
Shaltout
,
I.
,
Tang
,
Y.
,
Braunstein
,
R.
, and
Shaisha
,
E. E.
, “
FTIR Spectra and Some Optical Properties of Tungstate-Tellurite Glasses
,”
J. Phys. Chem. Solids
, Vol. 
57
, No. 
9
,
1996
, pp. 
1223
1230
, https://doi.org/10.1016/0022-3697(95)00309-6
5.
Ahmad
,
M. M.
,
Yousef
,
E. S.
, and
Moustafa
,
E. S.
, “
Dielectric Properties of the Ternary TeO2/Nb2O5/ZnO Glasses
,”
Physica B
, Vol. 
371
, No. 
1
,
2006
, pp. 
74
80
, https://doi.org/10.1016/j.physb.2005.09.040
6.
Kalampounias
,
A. G.
,
Papatheodorou
,
G. N.
, and
Yannopoulos
,
S. N.
, “
A Temperature Dependence Raman Study of the 0.1Nb2O5-0.9TeO2 Glass-Forming System
,”
J. Phys. Chem. Solids
, Vol. 
67
, No. 
4
,
2006
, pp. 
725
731
, https://doi.org/10.1016/j.jpcs.2005.11.001
7.
Azianty
,
S.
and
Yahya
,
A. K.
, “
Enhancement of Elastic Properties by WO3 Partial Replacement of TeO2 in Ternary (80-x)TeO2-20PbO-xWO3 Glass System
,”
J. Non-Cryst. Solids
, Vol. 
378
,
2013
, pp. 
234
240
, https://doi.org/10.1016/j.jnoncrysol.2013.07.016
8.
Shioya
,
K.
,
Komatsu
,
T.
,
Kim
,
H. G.
,
Sato
,
R.
, and
Matusita
,
K.
, “
Optical Properties of Transparent Glass-Ceramics in K2O-Nb2O5-TeO2 Glasses
,”
J. Non-Cryst. Solids
, Vol. 
189
, Nos. 
1–2
,
1995
, pp. 
16
24
, https://doi.org/10.1016/0022-3093(95)00227-8
9.
Fares
,
H.
,
Jlassi
,
I.
,
Elhouichet
,
H.
, and
Férid
,
M.
, “
Investigations of Thermal, Structural and Optical Properties of Tellurite Glass with WO3 Adding
,”
J. Non-Cryst. Solids
, Vols.
396–397
,
2014
, pp. 
1
7
, https://doi.org/10.1016/j.jnoncrysol.2014.04.012
10.
Yang
,
F.
,
Liu
,
C.
,
Wei
,
D.
,
Chen
,
Y.
,
Lu
,
J.
, and
Yang
,
S.-E.
, “
Er3+-Yb3+ Co-doped TeO2-PbF2 Oxyhalide Tellurite Glasses for Amorphous Silicon Solar Cells
,”
Opt. Mater.
, Vol. 
36
, No. 
6
,
2014
, pp. 
1040
1043
, https://doi.org/10.1016/j.optmat.2014.01.020
11.
Aziz
,
S. H. A.
,
El-Mallawany
,
R.
,
Badaron
,
S. S.
,
Kamari
,
H. M.
, and
Matori
,
K. A.
, “
Optical Properties of Erbium Zinc Tellurite Glass System
,”
Adv. Mater. Sci. Eng.
, Vol. 
2015
,
2015
, 5p.
12.
Sayyed
,
M. I.
, “
Investigations of Gamma Ray and Fast Neutron Shielding Properties of Tellurite Glasses with Different Oxide Compositions
,”
Can. J. Phys.
, Vol. 
94
, No. 
11
,
2016
, pp. 
1133
1137
, https://doi.org/10.1139/cjp-2016-0330
13.
Sayyed
,
M. I.
,
Lakshminarayana
,
G.
, and
Mahdi
,
M. A.
, “
Evaluation of Radiation Shielding Parameters for Optical Materials
,”
Chalcogenide Lett.
, Vol. 
14
, No. 
2
,
2017
, pp. 
43
47
.
14.
Issa
,
S.
,
Sayyed
,
M.
, and
Kurudirek
,
M.
, “
Investigation of Gamma Radiation Shielding Properties of Some Zinc Tellurite Glasses
,”
J. Phys. Sci.
, Vol. 
27
, No. 
3
,
2016
, pp. 
97
119
, https://doi.org/10.21315/jps2016.27.3.7
15.
Tekin
,
H. O.
,
Sayyed
,
M. I.
,
Manici
,
T.
, and
Altunsoy
,
E. E.
, “
Photon Shielding Characterizations of Bismuth Modified Borate–Silicate–Tellurite Glasses Using MCNPX Monte Carlo Code
,”
Mater. Chem. Phys.
, Vol. 
211
,
2018
, pp. 
9
16
, https://doi.org/10.1016/j.matchemphys.2018.02.009
16.
Azlan
,
M. N.
,
Halimah
,
M. K.
,
El-Mallawany
,
R.
,
Faznny
,
M. F.
, and
Eevon
,
C.
, “
Optical Properties of Zinc Borotellurite Glass System Doped with Erbium and Erbium Nanoparticles for Photonic Applications
,”
J. Mater. Sci.– Mater. Electron.
, Vol. 
28
, No. 
5
,
2017
, pp. 
4318
4327
, https://doi.org/10.1007/s10854-016-6056-2
17.
Zulkefly
,
S. S.
,
Kamari
,
H. M.
,
Abdul Azis
,
M. N. A.
, and
Wan Yusoff
,
W. M. D.
, “
Influence of Erbium Doping on Dielectric Properties of Zinc Borotellurite Glass System
,”
Mater. Sci. Forum
, Vol. 
846
,
2016
, pp. 
161
171
.
18.
Tijani
,
S. A.
,
Kamal
,
S. M.
,
Al-Hadeethi
,
Y.
,
Arib
,
M.
,
Hussein
,
M. A.
,
Wageh
,
S.
, and
Dim
,
L. A.
, “
Radiation Shielding Properties of Transparent Erbium Zinc Tellurite Glass System Determined at Medical Diagnostic Energies
,”
J. Alloys Compd.
, Vol. 
741
,
2018
, pp. 
293
299
, https://doi.org/10.1016/j.jallcom.2018.01.109
19.
Jaba
,
N.
,
Kanoun
,
A.
,
Mejri
,
H.
,
Selmi
,
A.
,
Alaya
,
S.
, and
Maaref
,
H.
, “
Infrared to Visible Up-Conversion Study for Erbium-Doped Zinc Tellurite Glasses
,”
J. Phys. Condens. Matter
, Vol. 
12
, No. 
20
,
2000
, pp. 
4523
4534
, https://doi.org/10.1088/0953-8984/12/20/307
20.
Wui
,
R. H. C.
,
Awang
,
A.
,
Voi
,
A. L. S.
,
Pien
,
C. F.
,
Abdullah
,
N.
, and
Dayou
,
J.
, “
Tuning Optical Properties of Erbium-Doped Zinc-Sodium Tellurite Glass Via Incorporation of Gold Nanoparticles
,”
Trans. Sci. Technol.
, Vol. 
4
, No. 
3
,
2017
, pp. 
209
217
.
21.
El-Zaidia
,
M. M.
,
Ammar
,
A. A.
, and
El-Mallwany
,
R. A.
, “
Infra-Red Spectra, Electron Spin Resonance Spectra, and Density of (TeO2)100x–(WO3)x and (TeO2)100x–(ZnCl2)x Glasses
,”
Phys. Status Solidi A
, Vol. 
91
, No. 
2
,
1985
, pp. 
637
642
, https://doi.org/10.1002/pssa.2210910234
22.
El-Mallawany
,
R.
,
Sidkey
,
M.
,
Khafagy
,
A.
, and
Afifi
,
H.
, “
Ultrasonic Attenuation of Tellurite Glasses
,”
Mater. Chem. Phys.
, Vol. 
37
, No. 
2
,
1994
, pp. 
197
200
, https://doi.org/10.1016/0254-0584(94)90093-0
23.
Bouchaour
,
Z. C. K.
,
Poulain
,
M.
,
Belhadji
,
M.
,
Hager
,
I.
, and
El-Mallawany
,
R.
, “
New Oxyfluoroniobate Glasses
,”
J. Non-Cryst. Solids
, Vol. 
351
, Nos. 
10–11
,
2005
, pp. 
818
825
, https://doi.org/10.1016/j.jnoncrysol.2005.01.081
24.
Hager
,
I. Z.
,
El-Mallawany
,
R.
, and
Bulou
,
A.
, “
Luminescence Spectra and Optical Properties of TeO2–WO3–Li2O Glasses Doped with Nd, Sm and Er Rare Earth Ions
,”
Physica B
, Vol. 
406
, No. 
4
,
2011
, pp. 
972
980
, https://doi.org/10.1016/j.physb.2010.12.041
25.
Berger
,
M. J.
,
Hubbell
,
J. H.
,
Seltzer
,
S. M.
,
Chang
,
J.
,
Coursey
,
J. S.
,
Sukumar
,
R.
,
Zucker
,
D. S.
, and
Olsen
,
K.
, “
XCOM: Photon Cross Section Database (version 1.5)
,” National Institute of Standards and Technology,
2010
, https://web.archive.org/web/20170802225332/https://www.nist.gov/pml/xcom-photon-cross-sections-database (accessed 20 Oct. 2017).
26.
Tekin
,
H. O.
, “
MCNP-X Monte Carlo Code Application for Mass Attenuation Coefficients of Concrete at Different Energies by Modeling 3 × 3 Inch NaI(Tl) Detector and Comparison with XCOM and Monte Carlo Data
,”
Sci. Technol. Nucl. Installations
, Vol. 
2016
,
2016
, 7p., https://doi.org/10.1155/2016/6547318
27.
Akkurt
,
I.
,
Tekin
,
H. O.
, and
Mesbahi
,
A.
, “
Calculation of Detection Efficiency for the Gamma Detector using MCNPX
,”
Acta Phys. Pol. A
, Vol. 
128
, No. 
2-B
, pp. 
332
334
.
28.
Tekin
,
H. O
,
Singh
,
V. P.
,
Kara
,
U.
,
Manici
,
T.
, and
Altunsoy
,
E. E.
, “
Investigation of Nanoparticle Effect on Radiation Shielding Property Using Monte Carlo Method
,”
CBU J. Sci.
, Vol. 
12
, No. 
2
,
2016
, pp. 
195
199
, https://doi.org/10.18466/cbujos.15586
29.
Tekin
,
H. O.
,
Singh
,
V. P.
, and
Manici
,
T.
, “
Effects of Micro-Sized and Nano-Sized WO3 on Mass Attenuation Coefficients of Concrete by Using MCNPX Code
,”
Appl. Radiat. Isot.
, Vol. 
121
,
2017
, pp. 
122
125
, https://doi.org/10.1016/j.apradiso.2016.12.040
30.
Tekin
,
H. O.
and
Manici
,
T.
, “
Simulations of Mass Attenuation Coefficients for Shielding Materials Using the MCNP-X Code
,”
Nucl. Sci. Tech.
, Vol. 
28
, No. 
7
,
2017
, pp. 
1
4
, https://doi.org/10.1007/s41365-017-0253-4
31.
Tekin
,
H. O.
,
Sayyed
,
M. I.
, and
Issa
,
S. A. M.
, “
Gamma Radiation Shielding Properties of the Hematite-Serpentine Concrete Blended with WO3 and Bi2O3 Micro and Nano Particles Using MCNPX Code
,”
Radiat. Phys. Chem.
, Vol. 
150
,
2018
, pp. 
95
100
, https://doi.org/10.1016/j.radphyschem.2018.05.002
32.
Tekin
,
H. O.
,
Singh
,
V. P.
,
Manici
,
T.
, and
Altunsoy
,
E. E.
, “
Validation of MCNPX with Experimental Results of Mass Attenuation Coefficients for Cement, Gypsum and Mixture
,”
J. Radiat. Prot. Res.
, Vol. 
42
, No. 
3
,
2017
, pp. 
154
157
, https://doi.org/10.14407/jrpr.2017.42.3.154
33.
RSICC Computer Code Collection
MCNPX User’s Manual Version 2.4.0. Monte Carlo N-Particle Transport Code System for Multiparticle and High Energy Applications
,
Oak Ridge National Laboratory
,
Oak Ridge, TN
,
2002
.
34.
Li
,
R.
,
Gu
,
Y.
,
Zhang
,
G.
,
Yang
,
Z.
,
Li
,
M.
, and
Zhang
,
Z.
, “
Radiation Shielding Property of Structural Polymer Composite: Continuous Basalt Fiber Reinforced Epoxy Matrix Composite Containing Erbium Oxide
,”
Compos. Sci. Technol.
, Vol. 
143
,
2017
, pp. 
67
74
, https://doi.org/10.1016/j.compscitech.2017.03.002
35.
El-Mallawany
,
R.
,
Sayyed
,
M. I.
, and
Dong
,
M. G.
, “
Comparative Shielding Properties of Some Tellurite Glasses: Part 2
,”
J. Non-Cryst. Solids
, Vol. 
474
,
2017
, pp. 
16
23
, https://doi.org/10.1016/j.jnoncrysol.2017.08.011
36.
Sayyed
,
M. I.
and
El-Mallawany
,
R.
, “
Shielding Properties of (100-x)TeO2-(x)MoO3 Glasses
,”
Mater. Chem. Phys.
, Vol. 
201
,
2017
, pp. 
50
56
, https://doi.org/10.1016/j.matchemphys.2017.08.035
37.
Dong
,
M. G.
,
El-Mallawany
,
R.
,
Sayyed
,
M. I.
, and
Tekin
,
H. O.
, “
Shielding Properties of 80TeO2–5TiO2–(15–x) WO3–xAnOm Glasses Using WinXCom and MCNP5 Code
,”
Radiat. Phys. Chem.
, Vol. 
141
,
2017
, pp. 
172
178
, https://doi.org/10.1016/j.radphyschem.2017.07.006
38.
Issa
,
S. A. M.
,
Kumar
,
A.
,
Sayyed
,
M. I.
,
Dong
,
M. G.
, and
Elmahroug
,
Y.
, “
Mechanical and Gamma-Ray Shielding Properties of TeO2-ZnO-NiO Glasses
,”
Mater. Chem. Phys.
, Vol. 
212
,
2018
, pp. 
12
20
, https://doi.org/10.1016/j.matchemphys.2018.01.058
39.
Singh
,
S.
,
Kumar
,
A.
,
Singh
,
D.
,
Thind
,
K. S.
, and
Mudahar
,
G. S.
, “
Barium-Borate-Flyash Glasses: As Radiation Shielding Materials
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
, Vol. 
266
, No. 
1
,
2008
, pp. 
140
146
, https://doi.org/10.1016/j.nimb.2007.10.018
40.
Bootjomchai
,
C.
,
Laopaiboon
,
J.
,
Yenchai
,
C.
, and
Laopaiboon
,
R.
, “
Gamma-Ray Shielding and Structural Properties of Barium-Bismuth-Borosilicate Glasses
,”
Radiat. Phys. Chem.
, Vol. 
81
, No. 
7
,
2012
, pp. 
785
790
, https://doi.org/10.1016/j.radphyschem.2012.01.049
41.
Kaur
,
K.
,
Singh
,
K. J.
, and
Anand
,
V.
, “
Structural Properties of Bi2O3-B2O3-SiO2-Na2O Glasses for Gamma Ray Shielding Applications
,”
Radiat. Phys. Chem.
, Vol. 
120
,
2016
, pp. 
63
72
, https://doi.org/10.1016/j.radphyschem.2015.12.003
This content is only available via PDF.
You do not currently have access to this content.