Abstract

Tool edge radius plays a significant role in affecting the surface integrity of machined products. The vast majority of existing research, however, takes no account of the effect of tool edge radius in the evaluation and modeling of machined surface roughness, an essential indicator of surface integrity. The present study fills this important research gap and has performed a total of 45 turning experiments on Unified Numbering System (UNS) A92024-T351 aluminum alloy with carefully selected cutting tools with three levels of tool edge radii. This article describes the experimental setup and measurements of tool edge radius and machined surface roughness. Machined surface roughness was evaluated using five parameters, including average roughness, root-mean-square roughness, peak roughness, maximum roughness height, and five-point average roughness. The experimental evidence presented in this article shows that the tool edge radius has a profound effect on machined surface roughness, cutting forces, and cutting vibrations. Based on the experimental data, three types of predictive models are developed, including a multiple regression model, multilayer perceptron neural network model, and radial basis function neural network model. The prediction accuracy of the three models is compared based on average mean squared errors. The results show that different models lead to different prediction accuracy for different surface roughness parameters.

References

1.
Fang
N.
, “
Slip-Line Modeling of Machining with a Rounded-Edge Tool—Part I: New Model and Theory
,”
Journal of the Mechanics and Physics of Solids
51
, no. 
4
(April
2003
):
715
742
, https://doi.org/10.1016/s0022-5096(02)00060-1
2.
Karpat
Y.
, “
Investigation of the Effect of Cutting Tool Edge Radius on Material Separation Due to Ductile Fracture in Machining
,”
International Journal of Mechanical Sciences
51
, no. 
7
(July
2009
):
541
546
, https://doi.org/10.1016/j.ijmecsci.2009.05.005
3.
Schimmel
R. J.
,
Endres
W. J.
, and
Stevenson
R.
, “
Application of an Internally Consistent Material Model to Determine the Effect of Tool Edge Geometry in Orthogonal Machining
,”
Journal of Manufacturing Science and Engineering
124
, no. 
3
(July
2002
):
536
543
, https://doi.org/10.1115/1.1448334
4.
Huang
P.
and
Lee
W. B.
, “
Cutting Force Prediction for Ultra-Precision Diamond Turning by Considering the Effect of Tool Edge Radius
,”
International Journal of Machine Tools and Manufacture
109
(October
2016
):
1
7
, https://doi.org/10.1016/j.ijmachtools.2016.06.005
5.
Arif
M.
,
Rahman
M.
, and
San
W. Y.
, “
A Study on the Effect of Tool-Edge Radius on Critical Machining Characteristics in Ultra-Precision Milling of Tungsten Carbide
,”
International Journal of Advanced Manufacturing Technology
67
, nos.
5–8
(July
2013
):
1257
1265
, https://doi.org/10.1007/s00170-012-4563-8
6.
Kang
I. S.
,
Kim
J. S.
, and
Seo
Y. W.
, “
Cutting Force Model Considering Tool Edge Geometry for Micro End Milling Process
,”
Journal of Mechanical Science and Technology
22
, no. 
2
(February
2008
):
293
299
, https://doi.org/10.1007/s12206-007-1110-x
7.
Yang
K.
,
Liang
Y.-C.
,
Zheng
K.-N.
,
Bai
Q.-S.
, and
Chen
W.-Q.
, “
Tool Edge Radius Effect on Cutting Temperature in Micro-End-Milling Process
,”
International Journal of Advanced Manufacturing Technology
52
, nos. 
9–12
(February
2011
):
905
912
, https://doi.org/10.1007/s00170-010-2795-z
8.
Endres
W. J.
and
Kountanya
R. K.
, “
The Effects of Corner Radius and Edge Radius on Tool Flank Wear
,”
Journal of Manufacturing Processes
4
, no. 
2
(July
2002
):
89
96
, https://doi.org/10.1016/s1526-6125(02)70135-7
9.
Nasr
M. N. A.
,
Ng
E.-G.
, and
Elbestawi
M. A.
, “
Modelling the Effects of Tool-Edge Radius on Residual Stresses When Orthogonal Cutting AISI 316L
,”
International Journal of Machine Tools and Manufacture
47
, no. 
2
(February
2007
):
401
411
, https://doi.org/10.1016/j.ijmachtools.2006.03.004
10.
Zhang
S. J.
,
To
S.
,
Wang
S. J.
, and
Zhu
Z. W.
, “
A Review of Surface Roughness Generation in Ultra-Precision Machining
,”
International Journal of Machine Tools and Manufacture
91
(April
2015
):
76
95
, https://doi.org/10.1016/j.ijmachtools.2015.02.001
11.
Kopač
J.
,
Bahor
M.
, and
Soković
M.
, “
Optimal Machining Parameters for Achieving the Desired Surface Roughness in Fine Turning of Cold Pre-formed Steel Workpieces
,”
International Journal of Machine Tools and Manufacture
42
, no. 
6
(May
2002
):
707
716
, https://doi.org/10.1016/s0890-6955(01)00163-8
12.
Ghani
A. K.
,
Choudhury
I. A.
, and
Husni
, “
Study of Tool Life, Surface Roughness and Vibration in Machining Nodular Cast Iron with Ceramic Tool
,”
Journal of Materials Processing Technology
127
, no. 
1
(September
2002
):
17
22
, https://doi.org/10.1016/s0924-0136(02)00092-4
13.
Risbood
K. A.
,
Dixit
U. S.
, and
Sahasrabudhe
A. D.
, “
Prediction of Surface Roughness and Dimensional Deviation by Measuring Cutting Forces and Vibrations in Turning Process
,”
Journal of Materials Processing Technology
132
, nos. 
1–3
(January
2003
):
203
214
, https://doi.org/10.1016/s0924-0136(02)00920-2
14.
Grum
J.
and
Kisin
M.
, “
Influence of Microstructure on Surface Integrity in Turning—Part I: The Influence of the Size of the Soft Phase in a Microstructure on Surface-Roughness Formation
,”
International Journal of Machine Tools and Manufacture
43
, no. 
15
(December
2003
):
1535
1543
, https://doi.org/10.1016/s0890-6955(03)00199-8
15.
Scandiffio
I.
,
Diniz
A. E.
, and
de Souza
A. F.
, “
Evaluating Surface Roughness, Tool Life, and Machining Force when Milling Free-Form Shapes on Hardened AISI D6 Steel
,”
International Journal of Advanced Manufacturing Technology
82
, nos. 
9–12
(February
2016
):
2075
2086
, https://doi.org/10.1007/s00170-015-7525-0
16.
Jahn
R.
and
Truckenbrodt
H.
, “
A Simple Fractal Analysis Method of the Surface Roughness
,”
Journal of Materials Processing Technology
145
, no. 
1
(January
2004
):
40
45
, https://doi.org/10.1016/s0924-0136(03)00860-4
17.
Grzesik
W.
and
Brol
S.
, “
Hybrid Approach to Surface Roughness Evaluation in Multistage Machining Processes
,”
Journal of Materials Processing Technology
134
, no. 
2
(March
2003
):
265
272
, https://doi.org/10.1016/s0924-0136(02)01105-6
18.
Maher
I.
,
Eltaib
M. E. H.
,
Sarhan
A. A. D.
, and
El-Zahry
R. M.
, “
Cutting Force-Based Adaptive Neuro-Fuzzy Approach for Accurate Surface Roughness Prediction in End Milling Operation for Intelligent Machining
,”
International Journal of Advanced Manufacturing Technology
76
, nos. 
5–8
(February
2015
):
1459
1467
, https://doi.org/10.1007/s00170-014-6379-1
19.
Wang
X. S.
,
Kang
M.
,
Fu
X.-Q.
, and
Li
C.-L.
, “
Predictive Modeling of Surface Roughness in Lenses Precision Turning Using Regression and Support Vector Machines
,”
International Journal of Advanced Manufacturing Technology
87
, nos. 
5–8
(November
2016
):
1273
1281
, https://doi.org/10.1007/s00170-013-5231-3
20.
Fukui
H.
,
Okida
J.
,
Omori
N.
,
Moriguchi
H.
, and
Tsuda
K.
, “
Cutting Performance of DLC Coated Tools in Dry Machining Aluminum Alloys
,”
Surface and Coatings Technology
187
, no. 
1
(October
2004
):
70
76
, https://doi.org/10.1016/j.surfcoat.2004.01.014
21.
Jose
B.
,
Nikita
K.
,
Patil
T.
,
Hemakumar
S.
, and
Kuppan
P.
, “
Online Monitoring of Tool Wear and Surface Roughness by Using Acoustic and Force Sensors
,”
Materials Today: Proceedings
5
, no. 
2
, part 2 (
2018
):
8299
8306
, https://doi.org/10.1016/j.matpr.2017.11.521
22.
Liang
X.
and
Liu
Z.
, “
Tool Wear Behaviors and Corresponding Machined Surface Topography during High-Speed Machining of Ti-6Al-4V with Fine Grain Tools
,”
Tribology International
121
(May
2018
):
321
332
, https://doi.org/10.1016/j.triboint.2018.01.057
23.
Ashrafi
S. A.
,
Davoudinejad
A.
, and
Niazi
A.
, “
Investigations into Effect of Tool Wear on Surface Integrity in Dry Turning of Al6061
,”
Advanced Materials Research
622–623
(December
2012
):
375
379
, https://doi.org/10.4028/www.scientific.net/amr.622-623.375
24.
Niaki
F. A.
and
Mears
L.
, “
A Comprehensive Study on the Effects of Tool Wear on Surface Roughness, Dimensional Integrity and Residual Stress in Turning IN718 Hard-to-Machine Alloy
,”
Journal of Manufacturing Processes
30
(December
2017
):
268
280
, https://doi.org/10.1016/j.jmapro.2017.09.016
25.
Whitehouse
D.
,
Surfaces and Their Measurement
(
Oxford, UK
:
Butterworth-Heinemann
,
2002
).
26.
Rosa
J. L.
, ed.,
Artificial Neural Networks—Models and Applications
(
London
:
IntechOpen
,
2016
).
27.
Hagan
M. T.
,
Demuth
H. B.
,
Beale
M. H.
, and
Jesús
O. D.
,
Neural Network Design
, 2nd ed. (
Stillwater
:
Martin Hagan
,
2014
).
28.
Masters
T.
,
Signal and Image Processing with Neural Networks
(
Hoboken, NJ
:
John Wiley & Sons
,
1994
).
29.
Beale
M. H.
,
Hagan
M. T.
, and
Demuth
H. B.
,
Neural Network Toolbox User’s Guide
(
Natick, MA
:
The MathWorks Inc
.,
2015
).
30.
Haykin
S.
,
Neural Networks: A Comprehensive Foundation
, 2nd ed. (
Upper Saddle River, NJ
:
Prentice Hall
,
1998
).
31.
Lehmann
E. L.
and
Casella
G.
,
Theory of Point Estimation
, 2nd ed. (
New York
:
Springer
,
1998
).
This content is only available via PDF.
You do not currently have access to this content.