Abstract

This article describes how optimization studies were carried out on a selection of optimal heat transfer fluids (HTFs) for solar applications with multiresponse characteristics based on the multi-criteria decision-making methodology (MCDM) using the Technique for Order Preference by Similarity Ideal Solution approach and grey relational analysis among 16 alternatives. The processing parameters’ thermophysical properties and the environmental, safety, and economic conditions are optimized with multiresponse characteristics, including the viscosity, thermal conductivity, specific heat capacity, density of fluid, thermal diffusivity, ozone depletion potential, global warming potential, flammability, toxicity, and cost of the fluid. In the proposed technique, the grade ratings and weights allocated by decision-makers are averaged and normalized into a comparable scale. By comparing both these techniques, deionized water is selected as the perfect HTF to operate the solar thermal applications. Hence, both of the techniques are suitable to establish the best possible solution for the set of input parameters depending upon the required performance characteristics. This article highlights a novel vision into MCDM methods to evaluate the best HTF for the decision-makers such as solar manufactures and research and development engineers to meet the low-cost, quick, appropriate, and environmentally friendly fluid selection.

References

1.
Trisaksri
V.
and
Wongwises
S.
, “
Critical Review of Heat Transfer Characteristics of Nanofliuds
,”
Renewable and Sustainable Energy Reviews
11
, no. 
3
(April
2007
):
512
523
. https://doi.org/10.1016/j.rser.2005.01.010
2.
Dincer
I.
, “
Energy and Environmental Impacts: Present and Future Perspectives
,”
Energy Sources
20
, nos. 
4–5
(May
1997
):
27
53
. https://doi.org/10.1080/00908319808970070
3.
Poongavanam
G. K.
and
Ramalingam
V.
, “
Characteristics Investigation on Thermophysical Properties of Synthesized Activated Carbon Nanoparticles Dispersed in Solar Glycol
,”
International Journal of Thermal Sciences
136
(February
2019
):
15
32
. https://doi.org/10.1016/j.ijthermalsci.2018.10.007
4.
Singh
J.
,
Heat Transfer Fluids and Systems for Process and Energy Applications
(
Boca Raton, FL
:
CRC Press
,
1985
).
5.
Kumaresan
V.
and
Velraj
R.
, “
Experimental Investigation of the Thermo-Physical Properties of Water–Ethylene Glycol Mixture Based CNT Nanofluids
,”
Thermochimica Acta
545
(October
2012
):
180
186
. https://doi.org/10.1016/j.tca.2012.07.017
6.
Kumar
P. G.
,
Kumaresan
V.
, and
Velraj
R.
, “
Experimental Investigation on Thermophysical Properties of Solar Glycol Dispersed with Multi-Walled Carbon Nanotubes
,”
Fullerenes, Nanotubes and Carbon Nanostructures
24
, no. 
10
(August
2016
):
641
652
. https://doi.org/10.1080/1536383X.2016.1219852
7.
Poongavanam
G. K.
,
Murugesan
R.
, and
Ramalingam
V.
, “
Thermal and Electrical Conductivity Enhancement of Solar Glycol-Water Mixture Containing MWCNTs
,”
Fullerenes, Nanotubes and Carbon Nanostructures
26
, no. 
12
(November
2018
):
871
879
. https://doi.org/10.1080/1536383X.2018.15
8.
Zhou
G.-Y.
,
Wu
E.
, and
Tu
S.-T.
, “
Optimum Selection of Compact Heat Exchangers Using Non-Structural Fuzzy Decision Method
,”
Applied Energy
113
(January
2014
):
1801
1809
. https://doi.org/10.1016/j.apenergy.2013.07.041
9.
Chou
C.-C.
,
Liu
N.-M.
,
Horng
J.-T.
, and
Chiang
K.-T.
, “
Designing Parameter Optimization of a Parallel-Plain Fin Heat Sink Using the Grey-Based Fuzzy Algorithm with the Orthogonal Arrays
,”
International Journal of Thermal Sciences
48
, no. 
12
(December
2009
):
2271
2279
. https://doi.org/10.1016/j.ijthermalsci.2009.04.012
10.
Saelee
S.
,
Paweewan
B.
,
Tongpool
R.
,
Witoon
T.
,
Takada
J.
, and
Manusboonpurmpool
K.
, “
Biomass Type Selection for Boilers Using TOPSIS Multi-Criteria Model
,”
International Journal of Environmental Science and Development
5
, no. 
2
(
2014
):
181
186
. https://doi.org/10.7763/IJESD.2014.V5.474
11.
Üçtuğ
G. F.
,
Kabakcı
N. E.
,
Bekdikhan
O. B.
, and
Akyürek
B.
, “
Multi-Criteria Decision Making-Based Comparison of Power Source Technologies for Utilization in Automobiles
,”
Journal of Clean Energy Technologies
3
, no. 
3
(May
2015
):
212
219
. https://doi.org/10.7763/JOCET.2015.V3.197
12.
Kumar
S. V.
and
Kumar
M. P.
, “
Optimization of Cryogenic Cooled EDM Process Parameters Using Grey Relational Analysis
,”
Journal of Mechanical Science and Technology
28
, no. 
9
(September
2014
):
3777
3784
. https://doi.org/10.1007/s12206-014-0840-9
13.
Yuvaraj
N.
and
Kumar
M. P.
, “
Multiresponse Optimization of Abrasive Water Jet Cutting Process Parameters Using TOPSIS Approach
,”
Materials and Manufacturing Processes
30
, no. 
7
(April
2014
):
882
889
. https://doi.org/10.1080/10426914.2014.994763
14.
Deshamukhya
T.
and
Ray
A.
, “
Selection of Cutting Fluid for Green Manufacturing Using Analytical Hierarchy Process (AHP): A Case Study
,”
International Journal of Mechanical Engineering and Robotics Research
3
, no. 
1
(January
2014
):
173
182
.
15.
Tan
X. C.
,
Liu
F.
,
Cao
H. J.
, and
Zhang
H.
, “
A Decision-Making Framework Model of Cutting Fluid Selection for Green Manufacturing and a Case Study
,”
Journal of Materials Processing Technology
129
, no. 
1
(
2002
):
467
470
. https://doi.org/10.1016/S0924-0136(02)00614-3
16.
Cetin
M. H.
,
Ozcelik
B.
,
Kurama
E.
, and
Demirbas
E.
, “
Evaluation of Vegetable Based Cutting Fluids with Extreme Pressure and Cutting Parameters in Turning of AISI 304L by Taguchi Method
,”
Journal of Cleaner Production
19
, nos. 
17–18
(November–December
2011
):
2049
2056
. https://doi.org/10.1016/j.jclepro.2011.07.013
17.
Fratila
D.
and
Caizar
C.
, “
Application of Taguchi Method to Selection of Optimal Lubrication and Cutting Conditions in Face Milling of AlMg3
,”
Journal of Cleaner Production
19
, nos. 
6–7
(April–May
2011
):
640
645
. https://doi.org/10.1016/j.jclepro.2010.12.007
18.
Kuram
E.
,
Ozcelik
B.
,
Demirbas
E.
,
Şik
E.
, and
Tansel
I. N.
, “
Evaluation of New Vegetable Based Cutting Fluids on Thrust Force and Surface Roughness in Drilling of AISI 304 Using Taguchi Method
,”
Materials and Manufacturing Processes
26
, no. 
9
(June
2011
):
1136
1146
. https://doi.org/10.1080/10426914.2010.536933
19.
Lin
S. J.
,
Lu
I. J.
, and
Lewis
C.
, “
Grey Relation Performance Correlations among Economics, Energy Use and Carbon Dioxide Emission in Taiwan
,”
Energy Policy
35
, no. 
3
(March
2007
):
1948
1955
. https://doi.org/10.1016/j.enpol.2006.06.012
20.
Lu
I. J.
,
Lin
S. J.
, and
Lewis
C.
, “
Grey Relation Analysis of Motor Vehicular Energy Consumption in Taiwan
,”
Energy Policy
36
, no. 
7
(July
2008
):
2556
2561
. https://doi.org/10.1016/j.enpol.2008.03.015
21.
Aixiang
T.
, “
Grey Relation Analysis on Agriculture Energy Consumption and Its Affecting Factors
,” in
International Conference on Digital Manufacturing & Automation
(
Washington, DC
:
Institute of Electrical and Electronics Engineers Computer Society
,
2010
),
1
:
786
789
.
22.
Sapuan
S. M.
,
Mujtaba
I. M.
, and
Wright
C. S.
, “
State of the Art Review of Engineering Materials Selection Methods
,”
Multidiscipline Modeling in Materials and Structures
5
, no. 
3
(
2009
):
263
268
. https://doi.org/10.1108/15736105200900021
23.
Chatterjee
P.
,
Athawale
V. M.
,
Chakraborty
S.
, “
Selection of Materials Using Compromise Ranking and Outranking Methods
,”
Materials & Design
30
, no. 
10
(December
2009
):
4043
4053
. https://doi.org/10.1016/j.matdes.2009.05.016
24.
Sapuan
S. M.
, “
A Knowledge-Based System for Materials Selection in Mechanical Engineering Design
,”
Materials & Design
22
, no. 
8
(December
2001
):
687
695
. https://doi.org/10.1016/S0261-3069(00)00108-4
25.
Rao
R. V.
and
Patel
B. K.
, “
A Subjective and Objective Integrated Multiple Attribute Decision Making Method for Material Selection
,”
Materials & Design
31
, no. 
10
(December
2010
):
4738
4747
. https://doi.org/10.1016/j.matdes.2010.05.014
26.
Maity
S. R.
and
Chakraborty
S.
, “
Grinding Wheel Abrasive Material Selection Using Fuzzy TOPSIS Method
,”
Materials and Manufacturing Processes
28
, no. 
4
(
2013
):
408
417
. https://doi.org/10.1080/10426914.2012.700159
27.
Singh
H.
and
Kumar
R.
, “
Selection of Material for Bicycle Chain in Indian Scenario Using MADM Approach
,” in
World Congress on Engineering
(
Hong Kong
:
International Association of Engineers
,
2012
).
28.
Pawar
P. J.
,
Rao
R. V.
, and
Davim
J. P.
, “
Multiobjective Optimization of Grinding Process Parameters Using Particle Swarm Optimization Algorithm
,”
Materials and Manufacturing Processes
25
, no. 
6
(June
2010
):
424
431
. https://doi.org/10.1080/10426910903124860
29.
Kumar
P. G.
,
Meikandan
M.
,
Sakthivadivel
D.
, and
Vigneswaran
V. S.
, “
Selection of Optimum Glazing Material for Solar Thermal Applications Using TOPSIS Methodology
,”
International Journal of Ambient Energy
(November
2018
).
30.
Jung
J. H.
and
Kwon
W. T.
, “
Optimization of EDM Process for Multiple Performance Characteristics Using Taguchi Method and Grey Relational Analysis
,”
Journal of Mechanical Science and Technology
24
, no. 
5
(May
2010
):
1083
1090
. https://doi.org/10.1007/s12206-010-0305-8
31.
Ulutan
D.
and
Özel
T.
, “
Multiobjective Optimization of Experimental and Simulated Residual Stresses in Turning of Nickel-Alloy IN100
,”
Materials and Manufacturing Processes
28
, no. 
7
(
2013
):
835
841
. https://doi.org/10.1080/10426914.2012.718474
32.
Tiwary
P.
,
Pradhan
B. B.
, and
Bhattacharyya
B.
, “
Application of Multi-Criteria Decision Making Methods for Selection of Micro-EDM Process Parameters
,”
Advances in Manufacturing
2
, no. 
3
(January
2014
):
251
258
. https://doi.org/10.1007/s40436-013-0050-1
33.
Lan
T.-S.
, “
Taguchi Optimization of Multi-Objective CNC Machining Using TOPSIS
,”
Information Technology Journal
8
, no. 
6
(
2009
):
917
922
. https://doi.org/10.3923/itj.2009.917.922
34.
Verma
V.
and
Sajeevan
R.
, “
Multi Process Parameter Optimization of Diesinking EDM on Titanium Alloy (Ti6Al4 V) Using Taguchi Approach
,”
Materials Today: Proceedings
2
, nos. 
4–5
(September
2015
):
2581
2587
. https://doi.org/10.1016/j.matpr.2015.07.212
35.
Manivannan
S.
,
Devi
S. P.
,
Arumugam
R.
, and
Sudharsan
N. M.
, “
Multi-Objective Optimization of Flat Plate Heat Sink Using Taguchi-Based Grey Relational Analysis
,”
The International Journal of Advanced Manufacturing Technology
52
, nos. 
5–8
(June
2011
):
739
749
. https://doi.org/10.1007/s00170-010-2754-8
36.
Chiang
K.-T.
,
Chang
F.-P.
, and
Tsai
T.-C.
, “
Optimum Design Parameters of Pin-Fin Heat Sink Using the Grey-Fuzzy Logic Based on the Orthogonal Arrays
,”
International Communications in Heat and Mass Transfer
33
, no. 
6
(July
2006
):
744
752
. https://doi.org/10.1016/j.icheatmasstransfer.2006.02.011
37.
Park
K.
and
Moon
S.
, “
Optimal Design of Heat Exchangers Using the Progressive Quadratic Response Surface Model
,”
International Journal of Heat and Mass Transfer
48
, no. 
11
(May
2005
):
2126
2139
. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.023
38.
Batayneh
W.
,
Khalaf
H.
, and
Sammakia
B. G.
, “
Neural Network Modeling of Parallel-Plain Fin Heat Sink
,”
International Journal of Applied Science and Technology
3
, no. 
3
(March
2013
):
91
100
.
39.
Chiang
K.-T.
, “
Optimization of the Design Parameters of Parallel-Plain Fin Heat Sink Module Cooling Phenomenon Based on the Taguchi Method
,”
International Communications in Heat and Mass Transfer
32
, no. 
9
(October
2005
):
1193
1201
. https://doi.org/10.1016/j.icheatmasstransfer.2005.05.015
40.
Chu
T.-C.
, “
Selecting Plant Location via a Fuzzy TOPSIS Approach
,”
The International Journal of Advanced Manufacturing Technology
20
, no. 
11
(November
2002
):
859
864
. https://doi.org/10.1007/s001700200227
41.
Yong
D.
, “
Plant Location Selection Based on Fuzzy TOPSIS
,”
The International Journal of Advanced Manufacturing Technology
28
, nos. 
7–8
(April
2006
):
839
844
. https://doi.org/10.1007/s00170-004-2436-5
42.
Devi
K.
and
Yadav
S. P.
, “
A Multicriteria Intuitionistic Fuzzy Group Decision Making for Plant Location Selection with ELECTRE Method
,”
The International Journal of Advanced Manufacturing Technology
66
, nos. 
9–12
(June
2013
):
1219
1229
. https://doi.org/10.1007/s00170-012-4400-0
43.
Hwang
C.-L.
and
Yoon
K.
,
Multiple Attribute Decision Making, Methods and Applications
(
Berlin
:
Springer-Verlag
,
1981
).
44.
Olson
D. L.
, “
Comparison of Weights in TOPSIS Models
,”
Mathematical and Computer Modelling
40
, nos. 
7–8
(October
2004
):
721
727
. https://doi.org/10.1016/j.mcm.2004.10.003
45.
Deng
J.-L.
, “
Introduction to Grey System Theory
,”
The Journal of Grey System
1
, no. 
1
(
1989
):
1
24
.
46.
Wu
H. H.
,
The Introduction of Grey Analysis
(
Taipei
:
Gauli Publishing Company
,
1996
).
This content is only available via PDF.
You do not currently have access to this content.