Abstract

Considering the increased application of high reclaimed asphalt pavement (high RAP) content mixtures, the biorejuvenator attracts increasing attention during the pavement maintenance and rehabilitation process, because this method can be implemented with ease and high effectiveness. However, the aging mechanism of biorejuvenated asphalt at a microscale is not well-understood. The microscale analysis provides a way to acknowledge how the biorejuvenator works. Therefore, this study aims to characterize the physical-structural and chemical changes of biorejuvenated asphalts of different aging levels at a microscale. The methodologies adopted include component analysis, atomic force microscopy (AFM), and Fourier-transform infrared spectroscopy (FTIR). In AFM tests, roughness and percentage of bee structures were compared in quantifying the surface morphology changes during aging. Correlation analysis was conducted between the microstructure and component analysis. Young’s modulus and adhesive forces were measured to quantify the micromechanical properties. FTIR spectra were used to investigate the aging mechanism. Results revealed that saturates, aromatics, resins and asphaltenes (SARA) fractions of original asphalts and biorejuvenated asphalts changed in the same way during aging. More special variations were found in aged biorejuvenated asphalt, and saturates content was discovered to determine the variation of bee structures’ percentage. The adhesion forces changed in different ways because of the different original asphalts, and the modulus index demonstrated that biorejuvenated asphalt aged faster than the original asphalt. The FTIR test demonstrated the new aldehyde in the biorejuvenator may be the reason for the accelerated aging of biorejuvenated asphalt.

References

1.
Lin
,
J.
,
Guo
,
P.
,
Wan
,
L.
, and
Wu
,
S.
, “
Laboratory Investigation of Rejuvenator Seal Materials on Performances of Asphalt Mixtures
,”
Constr. Build. Mater.
, Vol. 
37
,
2012
, pp. 
41
45
, https://doi.org/10.1016/j.conbuildmat.2012.07.008
2.
Solaimanian
,
M.
,
Milander
,
S.
,
Boz
,
I.
, and
Stoffels
,
S. M.
,
Development of Guidelines for Usage of High Percent Rap in Warm-Mix Asphalt Pavements
,
Pennsylvania Department of Transportation
,
Harrisburg, PA
,
2011
, 128p.
3.
Al-Qadi
,
I. L.
,
Elseifi
,
M.
, and
Carpenter
,
S. H.
, “
Reclaimed Asphalt Pavement—A Literature Review
,” Research Report FHWA-ICT-07-001, Illinois Center for Transportation, Rantoul, IL,
2007
.
4.
McDaniel
,
R. S.
and
Shah
,
A.
, “
Use of Reclaimed Asphalt Pavement (RAP) under Superpave Specifications: A Regional Pooled Fund Project
,” Research Report FHWA/IN/JTRP-2002/06, Indiana Department of Transportation and Purdue University, West Lafayette, Indiana,
2002
, https://doi.org/10.5703/1288284313465
5.
Singh
,
D.
and
Girimath
,
S.
, “
Influence of RAP Sources and Proportions on Fracture and Low Temperature Cracking Performance of Polymer Modified Binder
,”
Constr. Build. Mater.
, Vol. 
120
,
2016
, pp. 
10
18
, https://doi.org/10.1016/j.conbuildmat.2016.05.094
6.
Zhu
,
H.
,
Xu
,
G.
,
Gong
,
M.
, and
Yang
,
J.
, “
Recycling Long-Term-Aged Asphalts Using Bio-binder/Plasticizer-Based Rejuvenator
,”
Constr. Build. Mater.
, Vol. 
147
,
2017
, pp. 
117
129
, https://doi.org/10.1016/j.conbuildmat.2017.04.066
7.
Gong
,
M.
,
Yang
,
J.
,
Zhang
,
J.
,
Zhu
,
H.
, and
Tong
,
T.
, “
Physical–Chemical Properties of Aged Asphalt Rejuvenated by Bio-Oil Derived from Biodiesel Residue
,”
Constr. Build. Mater.
, Vol. 
105
,
2016
, pp. 
35
45
, https://doi.org/10.1016/j.conbuildmat.2015.12.025
8.
Fini
,
E. H.
,
Kalberer
,
E. W.
,
Shahbazi
,
A.
,
Basti
,
M.
,
You
,
Z.
,
Ozer
,
H.
, and
Aurangzeb
,
Q.
, “
Chemical Characterization of Biobinder from Swine Manure: Sustainable Modifier for Asphalt Binder
,”
J. Mater. Civil Eng.
, Vol. 
23
, No. 
11
,
2011
, pp. 
1506
1513
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000237
9.
Wen
,
H.
,
Bhusal
,
S.
, and
Wen
,
B.
, “
Laboratory Evaluation of Waste Cooking Oil-Based Bioasphalt as an Alternative Binder for Hot Mix Asphalt
,”
J. Mater. Civil Eng.
, Vol. 
25
, No. 
10
,
2013
, pp. 
1432
1437
, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000713
10.
Podolsky
,
J. H.
,
Buss
,
A.
,
Hernandez
,
N.
,
Williams
,
R.
and
Cochran
,
E.
, “
Low and Intermediate Temperature Properties of Asphalt Mixtures Using Vacuum Tower Bottoms Modified with Bio-Derived Rejuvenators
,” presented at
International Society of Asphalt Pavements (ISAP) 2016 Symposium
, Jackson, WY, July 18–21,
2016
,
International Society of Asphalt Pavements
,
Lino Lakes, MN
.
11.
Lin
,
J.
,
Hong
,
J.
,
Liu
,
J.
, and
Wu
,
S.
, “
Investigation on Physical and Chemical Parameters to Predict Long-Term Aging of Asphalt Binder
,”
Constr. Build. Mater.
, Vol. 
122
,
2016
, pp. 
753
759
, https://doi.org/10.1016/j.conbuildmat.2016.06.121
12.
Yang
,
J.
,
Yao
,
Z.
,
Gong
,
M.
, and
Yao
,
H.
, “
Investigation on Microcrystalline Wax Doped Asphalts by Temperature Control Mode of Atomic Force Microscopy
,”
China Pet. Process. Petrochem. Technol.
, Vol. 
18
, No. 
4
,
2016
, pp. 
71
80
.
13.
Wang
,
M.
and
Liu
,
L.
, “
Investigation of Microscale Aging Behavior of Asphalt Binders Using Atomic Force Microscopy
,”
Constr. Build. Mater.
, Vol. 
135
,
2017
, pp. 
411
419
, https://doi.org/10.1016/j.conbuildmat.2016.12.180
14.
Klapetek
,
P.
,
Nečas
,
D.
, and
Anderson
,
C.
, “
Gwyddion Documentation
,” Gwyddion, https://web.archive.org/web/20180220030113/http:/gwyddion.net:80/documentation/ (accessed 20 Feb. 2018).
15.
Gong
,
M.
,
Zhu
,
H.
,
Pauli
,
T.
,
Yang
,
J.
,
Wei
,
J.
, and
Yao
,
Z.
, “
Evaluation of Bio-binder Modified Asphalt’s Adhesion Behavior Using Sessile Drop Device and Atomic Force Microscopy
,”
Constr. Build. Mater.
, Vol. 
145
,
2017
, pp. 
42
51
, https://doi.org/10.1016/j.conbuildmat.2017.03.114
16.
Yu
,
X.
,
Burnham
,
N. A.
,
Mallick
,
R. B.
, and
Tao
,
M.
, “
A Systematic AFM-Based Method to Measure Adhesion Differences between Micron-Sized Domains in Asphalt Binders
,”
Fuel
, Vol. 
113
, No. 
9
,
2013
, pp. 
443
447
, https://doi.org/10.1016/j.fuel.2013.05.084
17.
Domke
,
J.
and
Radmacher
,
M.
, “
Measuring the Elastic Properties of Thin Polymer Films with the Atomic Force Microscope
,”
Langmuir
, Vol. 
14
, No. 
12
,
1998
, pp. 
3320
3325
, https://doi.org/10.1021/la9713006
18.
Airey
,
G. D.
, “
Rheological Properties of Styrene Butadiene Styrene Polymer Modified Road Bitumens
,”
Fuel
, Vol. 
82
, No. 
14
,
2003
, pp. 
1709
1719
, https://doi.org/10.1016/S0016-2361(03)00146-7
19.
Cortizo
,
M. S.
,
Larsen
,
D. O.
,
Bianchetto
,
H.
, and
Alessandrini
,
J. L.
, “
Effect of the Thermal Degradation of SBS Copolymers during the Ageing of Modified Asphalts
,”
Polym. Degrad. Stab.
, Vol. 
86
, No. 
2
,
2004
, pp. 
275
282
, https://doi.org/10.1016/j.polymdegradstab.2004.05.006
20.
Nivitha
,
M. R.
,
Prasad
,
E.
, and
Krishnan
,
J. M.
, “
Ageing in Modified Bitumen Using FTIR Spectroscopy
,”
Int. J. Pavement Eng.
, Vol. 
17
, No. 
7
,
2015
, pp. 
565
577
, https://doi.org/10.1080/10298436.2015.1007230
21.
Yang
,
J.
,
Gong
,
M.
,
Wang
,
X.
,
Chen
,
X.
,
Wang
,
X.
, and
Wang
,
Z.
, “
Observation and Characterization of Asphalt Microstructure by Atomic Force Microscopy
,”
J. Southeast Univ.
, Vol. 
30
, No. 
3
,
2014
, pp. 
353
357
.
22.
Pauli
,
A. T.
,
Grimes
,
R. W.
,
Beemer
,
A. G.
,
Turner
,
T. F.
, and
Branthaver
,
J. F.
, “
Morphology of Asphalts, Asphalt Fractions and Model Wax-Doped Asphalts Studied by Atomic Force Microscopy
,”
Int. J. Pavement Eng.
, Vol. 
12
, No. 
4
,
2011
, pp. 
291
309
, https://doi.org/10.1080/10298436.2011.575942
23.
Gong
,
M.
,
Yao
,
H
,
Paili
,
T.
,
Yao
,
Z.
, and
Yang
,
J.
, “
Investigation on Asphalt’s Wax-Induced Phase Separation Behavior and Its Impact on Rheological Properties
,” presented at the
Fourth Chinese-European Workshop on Functional Pavement Design
, Delft, the Netherlands, June 29–July 1,
2016
,
CRC Press
,
London, UK
, pp. 
365
374
.
24.
Dong
,
F.
,
Fan
,
W.
,
Yang
,
G.
,
Wei
,
J.
,
Luo
,
H.
,
Wu
,
M.
, and
Zhang
,
Y.
, “
Dispersion of SBS and Its Influence on the Performance of SBS Modified Asphalt
,”
J. Test. Eval.
, Vol. 
42
, No. 
5
,
2014
, pp. 
1073
1080
, https://doi.org/10.1520/JTE20130213
25.
Hao
,
G.
,
Huang
,
W.
,
Yuan
,
J.
,
Tang
,
N.
, and
Xiao
,
F.
, “
Effect of Aging on Chemical and Rheological Properties of SBS Modified Asphalt with Different Compositions
,”
Constr. Build. Mater.
, Vol. 
156
,
2017
, pp. 
902
910
, https://doi.org/10.1016/j.conbuildmat.2017.06.146
26.
Xu
,
J.
,
Zhang
,
A.
,
Zhou
,
T.
,
Cao
,
X.
, and
Xie
,
Z
, “
A Study on Thermal Oxidation Mechanism of Styrene–Butadiene–Styrene Block Copolymer (SBS)
,”
Polym. Degrad. Stab.
, Vol. 
92
, No. 
9
,
2007
, pp. 
1682
1691
, https://doi.org/10.1016/j.polymdegradstab.2007.06.008
27.
Xu
,
X.
,
Yu
,
J.
,
Xue
,
L.
,
Zhang
,
C.
,
Zha
,
Y.
, and
Gu
,
Y.
, “
Investigation of Molecular Structure and Thermal Properties of Thermo-Oxidative Aged SBS in Blends and Their Relations
,”
Materials
, Vol. 
10
, No. 
7
,
2017
, 768, https://doi.org/10.3390/ma10070768
28.
Feng
,
Z.-G.
,
Wang
,
S.-J.
,
Bian
,
H.-J.
,
Guo
,
Q.-L.
, and
Li
,
X.-J.
, “
FTIR and Rheology Analysis of Aging on Different Ultraviolet Absorber Modified Bitumens
,”
Constr. Build. Mater.
, Vol. 
115
,
2016
, pp. 
48
53
, https://doi.org/10.1016/j.conbuildmat.2016.04.040
This content is only available via PDF.
You do not currently have access to this content.