Abstract

The quality of a product in manufacturing is appraised by dimensional accuracy and surface finish. Among many factors that influence these two aspects cutting fluids stimulate the quality of machined surfaces by improving machining performance. Before they are applied to machining, it is essential to assess the viability of the cutting fluids. This is done by evaluating their basic properties. This paper is an attempt to evaluate thermophysical properties of vegetable oil–based nanocutting fluids in view of ecofriendly machining with a focus on enhanced machining performance. In view of this aspect, carbon nanotubes (CnT) and nanoboric acid (nBA) nanoparticles with variation in percentage of nanoparticle inclusions (NPI) are dispersed in coconut oil. The nanocutting fluids thus formulated are tested for density, dynamic viscosity, and thermal conductivity. Specific heat and heat transfer coefficient are evaluated using empirical relations. It is observed that density, thermal conductivity, and dynamic viscosity increased with increase in NPI for CnT- and nBA-dispersed nanocutting fluids. Viscosity is found to decreasze with increase in temperature for both the types of nanocutting fluids. Specific heat increased slightly with increase in NPI from 0 % to 1.25 % for CnT-dispersed fluids, whereas a slight decrease was observed for nBA-dispersed fluids. Heat transfer coefficient has increased with increase in NPI for CnT-based fluids. Fluids dispersed with nBA exhibited an increase followed by a decrease in heat transfer coefficient with increase in NPI. On the whole, it is discerned that for CnT-dispersed coconut oil–based cutting fluids, basic properties are much better than those of their nBA counterparts.

References

1.
Ojolo
,
S. J.
,
Amuda
,
M. O. H.
,
Ogunmola
,
O. Y.
, and
Ononiwu
,
C. U.
, “
Experimental Determination of the Effect of Some Straight Biological Oils on Cutting Force during Cylindrical Turning
,”
Revista Matéria
, Vol. 
13
, No. 
4
,
2008
, pp. 
650
663
, https://doi.org/10.1590/S1517-70762008000400011
2.
Xavior
,
M. A.
and
Adithan
.
M.
Determining the Influence of Cutting Fluids on Tool Wear and Surface Roughness during Turning of AISI 304 Austenitic Stainless Steel
,”
J. Mater. Process. Technol.
, Vol. 
209
, No. 
2
,
2009
, pp. 
900
909
, https://doi.org/10.1016/j.jmatprotec.2008.02.068
3.
Nizam
.
M. K.
and
Abdul Bari
,
H. A.
, “
The Use of Vegetable Oil in Lubricant as Base Oil: A Review
,” presented at the
National Conference on Postgraduate Research (NCON-PGR)
, Universiti Malaysia, Pahang, Malaysia, Oct. 1,
2009
, pp. 
123
127
.
4.
Li
,
K. M.
and
Liang
,
S. Y.
, “
Performance Profiling of Minimum Quantity Lubrication in Machining
,”
Int. J. Adv. Manuf. Technol.
, Vol. 
35
, Nos. 
3–4
,
2007
, pp. 
226
233
, https://doi.org/10.1007/s00170-006-0713-1
5.
Rahman
,
M.
,
Kumar
,
S. A.
, and
Salem
,
M. U.
, “
Evaluation of Minimal of Lubricant in End Milling
,”
Int. J. Adv. Manuf. Technol.
, Vol. 
18
, No. 
4
,
2001
, pp. 
235
241
, https://doi.org/10.1007/s001700170063
6.
Padmini
,
R.
,
Krishna
,
P. V.
, and
Rao
,
K. M.
, “
Effectiveness of Vegetable Oil Based Nanofluids as Potential Cutting Fluids in Turning AISI 1040 Steel
,”
Tribol. Int.
, Vol. 
94
,
2016
, pp. 
490
501
, https://doi.org/10.1016/j.triboint.2015.10.006
7.
Vamsi Krishna
,
P.
,
Srikant
,
R. R.
,
Padmini
,
R.
, and
Parakh
,
B.
, “Basic Properties and Performance of Vegetable Oil-Based Boric Acid Nanofluids in Machining,”
Emerging Trends in Science, Engineering and Technology
,
Springer
,
Berlin, Germany
,
2012
, pp. 
197
206
, https://doi.org/10.1007/978-81-322-1007-8_17
8.
Sodavadia
,
K. P.
and
Makwana
,
A. H.
, “
Experimental Investigation on the Performance of Coconut Oil Based Nano Fluid as Lubricants during Turning of AISI 304 Austenitic Stainless Steel
,”
Int. J. Adv. Mech. Eng.
, Vol. 
4
, No. 
1
,
2014
, pp. 
55
60
.
9.
Özerinç
,
Z.
, “
Heat Transfer Enhancement with Nanofluids
,” M.S. thesis,
Graduate School of Natural and Applied Sciences
, Middle East Technical University, Ankara, Turkey,
2010
.
10.
Srikant
,
R. R.
,
Prasad
,
M. M. S.
,
Amrita
,
M.
,
Sitaramaraju
,
A. V.
, and
Vamsi Krishna
,
P.
, “
Nanofluids as a Potential Solution for Minimum Quantity Lubrication: A Review
,”
J. Eng. Manuf.
, Vol. 
228
, No. 
1
,
2013
, pp. 
3
20
, https://doi.org/10.1177/0954405413497939
11.
Kang
.
H. U.
,
Kim
,
S. H.
, and
Oh
,
J. M.
, “
Estimation of Thermal Conductivity of Nanofluid Using Experimental Effective Particle Volume
,”
Exp. Heat Transfer
, Vol. 
19
, No. 
3
,
2006
, pp. 
181
191
, https://doi.org/10.1080/08916150600619281
12.
Prasher
,
R.
,
Song
,
D.
,
Wang
,
J.
, and
Phelan
,
P. E.
, “
Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications
,”
Appl. Phys. Lett.
, Vol. 
89
,
2006
, 133108, https://doi.org/10.1063/1.2356113
13.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Galanis
,
N.
,
Roy
,
G.
,
Maré
,
T.
,
Boucher
,
S.
, and
Mintsa
,
H. A.
, “
Viscosity Data for Al2O3–Water Nanofluid-Hysteresis: Is Heat Transfer Enhancement Using Nanofluids Reliable?
,”
Int. J. Therm. Sci.
, Vol. 
47
, No. 
2
,
2008
, pp. 
103
111
, https://doi.org/10.1016/j.ijthermalsci.2007.01.033
14.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
, “
Natural Convection of Nano-Fluids
,”
Heat Mass Transfer
, Vol. 
39
, Nos. 
8–9
,
2003
, pp. 
775
784
, https://doi.org/10.1007/s00231-002-0382-z
15.
Das
,
S. K.
,
Choi
,
S. U.
,
Yu
,
W.
, and
Pradeep
,
T.
,
Nanofluids: Science and Technology
,
John Wiley & Sons
,
Hoboken, NJ
,
2008
, 416p.
16.
Wong
,
K. V.
and
Leon
,
O. D.
, “
Applications of Nanofluids: Current and Future
,”
Adv. Mech. Eng.
,
2010
, pp. 
1
11
, https://doi.org/10.1155/2010/519659
17.
Moghadassi
,
A. R.
,
Hosseini
,
S. M.
,
Henneke
,
D.
, and
Elkamel
,
A.
, “
A Model of Nanofluids Effective Thermal Conductivity Based on Dimensionless Groups
,”
J. Therm. Anal. Calorim.
, Vol. 
96
, No. 
1
,
2009
, pp. 
81
84
, https://doi.org/10.1007/s10973-008-9843-z
18.
Kulkarni
,
D. P.
, “
Comparison of Heat Transfer Rates of Different Nanofluids on the Basis of The Mouromtseff Number
,”
Electronics Cooling
, Vol. 
13
, No. 
3
,
2007
, pp. 
28
32
.
19.
Xuan
,
Y.
and
Qiang
,
L.
, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
, Vol. 
21
, No. 
1
,
2000
, pp. 
58
64
, https://doi.org/10.1016/S0142-727X(99)00067-3
20.
Krajnik
,
P.
,
Pusavec
,
F.
, and
Rashid
,
A.
, “Nanofluids: Properties, Applications and Sustainability Aspects in Materials Processing Technologies,”
Advances in Sustainable Manufacturing
,
Springer, Berlin
,
Germany
,
2011
, pp. 
107
113
, https://doi.org/10.1007/978-3-642-20183-7_16
21.
Shaikh
,
S.
,
Lafdi
,
K.
, and
Ponnappan
,
R.
, “
Thermal Conductivity Improvement in Carbon Nanoparticle Doped PAO Oil: An Experimental Study
,”
J. Appl. Phys.
, Vol. 
101
, No. 
6
,
2007
, 064302, https://doi.org/10.1063/1.2710337
22.
Yu
,
W.
,
France
,
D. M.
,
Routbort
,
J. L.
, and
Choi
,
S.U.
, “
Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements
,”
Heat Transfer Eng.
, Vol. 
29
, No. 
5
,
2008
, pp. 
432
460
, https://doi.org/10.1080/01457630701850851
23.
Keblinski
,
P.
,
Prasher
,
R.
, and
Eapen
,
J.
, “
Thermal Conductance of Nanofluids: Is the Controversy Over?
,”
J. Nanopart. Res.
, Vol. 
10
, No. 
7
,
2008
, pp. 
1089
1097
, https://doi.org/10.1007/s11051-007-9352-1
This content is only available via PDF.
You do not currently have access to this content.