Abstract

Albedo in the context of the Urban Heat Island contributes to the environmental impact of a pavement. Measuring the pavement albedo is difficult as it depends on the size of the specimen, background interference, and variations in the incoming solar spectrum. For this study, the albedo was determined for a 1-m2 concrete slab cast with white cement containing titanium dioxide nanoparticles. The size of the exposed surface of the slab was varied using black paper. To calculate the albedo of these nonstandard specimen sizes, a new testing technique was proposed that uses an albedometer and various geometric conditions, including the exposed slab surface and measurement height. The albedo of the finite-sized concrete specimen was found to range from 0.50 to 0.55, depending on the number of unknowns assumed, with the most reasonable estimate of 0.54. The measured slab albedo from the new method was also verified using a laboratory spectrophotometer. With this proposed methodology to account for background surfaces, the albedo of laboratory-sized concrete specimens of any shape can now be easily measured at various test site locations.

References

1.
The World Bank “World Development Indicators,”
2016
, https://web.archive.org/web/20160828173639/https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS (accessed 29 Aug. 2016).
2.
Kleerekopera
,
L.
,
van Esch
,
M.
, and
Salcedo
,
T. B.
, “
How to Make a City Climate-Proof, Addressing the Urban Heat Island Effect
,”
Resour. Conserv. Recycl.
, Vol. 
64
,
2012
, pp. 
30
38
, https://doi.org/10.1016/j.resconrec.2011.06.004
3.
Santero
,
N. J.
,
Masanet
,
E.
, and
Horvath
,
A.
, “
Life-Cycle Assessment of Pavement Part II: Filling the Research Gaps
,”
Resour. Conserv. Recycl.
, Vol. 
55
, Nos. 
9–10
,
2011
, pp. 
810
818
, https://doi.org/10.1016/j.resconrec.2011.03.009
4.
Akbari
,
H.
,
Menon
,
S.
, and
Rosenfeld
,
A.
, “
Global cooling: Increasing World-Wide Urban Albedos to Offset CO2
,”
Clim. Change
, Vol. 
94
, Nos. 
3–4
,
2009
, pp. 
275
286
, https://doi.org/10.1007/s10584-008-9515-9
5.
Menon
,
S.
,
Akbari
,
H.
,
Mahanama
,
S.
,
Sednev
,
I.
, and
Levinson
,
R.
, “
Radiative Forcing and Temperature Response to Changes in Urban Albedos and Associated CO2 Offsets
,”
Environ. Res. Lett.
, Vol. 
5
, No. 
1
,
2010
, 014005, https://doi.org/10.1088/1748-9326/5/1/014005
6.
Santamouris
,
M.
,
Synnefa
,
A.
, and
Karlessi
,
T.
, “
Using Advanced Cool Materials in the Urban Built Environment to Mitigate Heat Islands and Improve Thermal Comfort Conditions
,”
Sol. Energy
, Vol. 
85
, No. 
12
,
2011
, pp. 
3085
3102
, https://doi.org/10.1016/j.solener.2010.12.023
7.
Gui
,
J.
,
Phelan
,
P. E.
,
Kaloush
,
K. E.
, and
Golden
,
J. S.
, “
Impact of Pavement Thermophysical Properties on Surface Temperatures
,”
J. Mater. Civ. Eng.
, Vol. 
19
, No. 
8
,
2007
, pp. 
683
690
, https://doi.org/10.1061/(ASCE)0899-1561(2007)19:8(683)
8.
Sen
,
S.
and
Roesler
,
J.
, “
Assessment of Concrete Pavement Structure on Urban Heat Island
,” presented at the
International Symposium on Pavement Life Cycle Assessment 2014
, Davis, CA, Oct. 14–16,
2014
,
National Center for Sustainable Transportation
,
Davis, CA
, pp. 
191
200
.
9.
Li
,
H.
,
Harvey
,
J.
, and
Jones
,
D.
, “
Development and Preliminary Validation of Integrated Local Microclimate Model for Numerical Evaluation of Cool Pavement Strategies
,”
Transp. Res. Rec.
, Vol. 
2444
,
2014
, pp. 
151
164
, https://doi.org/10.3141/2444-17
10.
Carlson
,
J. D.
,
Bhardwaj
,
R.
,
Phela
,
P. E.
,
Kaloush
,
K. E.
,
Golden
,
J. S.
, “
Determining Thermal Conductivity of Paving Materials Using Cylindrical Sample Geometry
,”
J. Mater. Civ. Eng.
, Vol. 
22
, No. 
2
,
2010
, pp. 
186
195
, https://doi.org/10.1061/(ASCE)0899-1561(2010)22:2(186)
11.
Sen
,
S.
and
Roesler
,
J.
, “
Microscale Heat Island Characterization of Rigid Pavements
,”
Transp. Res. Rec., J. Transp. Res. Board
, Vol. 
2639
,
2017
, pp. 
73
83
.
12.
Yang
,
J.
,
Wang
,
Z. H.
, and
Kaloush
,
K.
, “
Environmental Impacts of Reflective Materials: Is High Albedo a ‘Silver Bullet’ for Mitigating Urban Heat Island?
,”
Renewable Sustainable Energy Rev.
, Vol. 
47
,
2015
, pp. 
830
843
, https://doi.org/10.1016/j.rser.2015.03.092
13.
ASTM E1918
Standard Test Method for Measuring Solar Reflectance of Horizontal and Low-Sloped Surfaces in the Field
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2006
, www.astm.org
14.
Li
,
H.
,
Harvey
,
J.
, and
Kendall
,
A.
, “
Field Measurement of Albedo for Different Land Cover Materials and Effects on Thermal Performance
,”
Build. Environ.
, Vol. 
59
,
2013
, pp. 
536
546
, https://doi.org/10.1016/j.buildenv.2012.10.014
15.
Lin
,
T. P.
,
Matzarakis
,
A.
,
Hwang
,
R. L.
, and
Huang
,
Y. C.
, “Effect of Pavements Albedo on Long-Term Outdoor Thermal Comfort,” Berichte des Meteorologischen Instituts der Albert-Ludwigs-Universität Freiburg,
2010
, pp. 497–503.
16.
Krimpalis
,
S.
and
Karamanis
,
D.
, “
A Novel Approach to Measuring the Solar Reflectance of Conventional and Innovative Building Components
,”
Energy Build.
, Vol. 
97
,
2015
, pp. 
137
145
, https://doi.org/10.1016/j.enbuild.2015.04.003
17.
Pisello
,
A. L.
,
Pignatta
,
G.
,
Castaldo
,
V. L.
, and
Cotana
,
F.
, “
Experimental Analysis of Natural Gravel Covering as Cool Roofing and Cool Pavement
,”
Sustainability
, Vol. 
6
,
2014
, pp. 
4706
4722
, https://doi.org/10.3390/su6084706
18.
Tran
,
N.
,
Powell
,
B.
,
Marks
,
H.
,
West
,
R.
, and
Kvasnak
,
A.
, “
Strategies for Design and Construction of High-Reflectance Asphalt Pavements
,”
Transp. Res. Rec.
, Vol. 
2098
,
2009
, pp. 
124
130
, https://doi.org/10.3141/2098-13
19.
Kaloush
,
K. E.
,
Carlson
,
J. D.
,
Golden
,
J. S.
, and
Phelan
,
P. E.
, The Thermal and Radiative Characteristics of Concrete Pavements in Mitigating Urban Heat Island Effects, Report No. PCA R&D SN2969, Portland Cement Association, Skokie, IL,
2008
, 139p.
20.
Li
,
H.
,
Harvey
,
J.
,
He
,
Y.
,
Chen
,
Z.
, and
Li
,
P.
, “
Pavement Treatment Practices and Dynamic Albedo Change in Urban Pavement Network in California
,”
Transp. Res. Rec.
, Vol. 
2523
,
2015
, pp. 
145
155
.
21.
Levinson
,
R.
and
Akbari
,
H.
, “
Effects of Composition and Exposure on the Solar Reflectance of Portland Cement Concrete
,”
Cem. Concr. Res.
, Vol. 
32
, No. 
11
,
2002
, pp. 
1679
1698
, https://doi.org/10.1016/S0008-8846(02)00835-9
22.
Boriboonsomsin
,
K.
and
Reza
,
F.
, “
Mix Design and Benefit Evaluation of High Solar Reflectance Concrete for Pavements
,”
Transp. Res. Rec.
, Vol. 
2011
, No. 
1
,
2007
, pp. 
11
20
.
23.
Levinson
,
R.
,
Akbari
,
H.
, and
Berdahl
,
P.
, “
Measuring Solar Reflectance—Part II: Review of Practical Methods
,”
Sol. Energy
, Vol. 
84
, No. 
9
,
2010
, pp. 
1745
1759
, https://doi.org/10.1016/j.solener.2010.04.017
24.
van Ginneken
,
B.
,
Stavridi
,
M.
, and
Koenderink
,
J. J.
, “
Diffuse and Specular Reflectance from Rough Surfaces
,”
Appl. Opt.
, Vol. 
37
, No. 
1
,
1998
, pp. 
130
1
, https://doi.org/10.1364/AO.37.000130
25.
Reifsnyder
,
W. E.
, “
Radiation Geometry in the Measurement and Interpretation of Radiation Balance
,”
Agric. Meteorol.
, Vol. 
4
, No. 
4
,
1967
, pp. 
255
265
, https://doi.org/10.1016/0002-1571(67)90026-X
26.
Matthias
,
A. D.
,
Post
,
D. F.
,
Accioly
,
L.
,
Fimbres
,
A.
,
Sano
,
E. E.
, and
Batchily
,
A. K.
, “
Measurement of Albedos for Small Area of Soil
,”
Soil Sci.
, Vol. 
164
, No. 
5
,
1999
, pp. 
293
301
, https://doi.org/10.1097/00010694-199905000-00001
27.
Sailor
,
D. J.
,
Resh
,
K.
, and
Segura
,
D.
, “
Field Measurement of Albedo for Limited Extent Test Surfaces
,”
Sol. Energy
, Vol. 
80
, No. 
5
,
2006
, pp. 
589
599
, https://doi.org/10.1016/j.solener.2005.03.012
28.
Akbari
,
H.
,
Levinson
,
R.
, and
Stern
,
S.
, “
Procedure for Measuring the Solar Reflectance of Flat or Curved Roofing Assemblies
,”
Sol. Energy
, Vol. 
82
, No. 
7
,
2008
, pp. 
648
655
, https://doi.org/10.1016/j.solener.2008.01.001
29.
ASTM E903
Standard Test Method for Solar Absorptance, Recflectance, and Transmittance of Materials using Integrating Spheres
,
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
30.
ASTM G173
Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Titled Surface
,
ASTM International
,
West Conshohocken, PA
,
2003
, www.astm.org
31.
Synnefa
,
A.
,
Karlessi
,
T.
,
Gaitani
,
N.
,
Santamouris
,
M.
,
Assimakopoulos
,
D. N.
, and
Papakatsikas
,
C.
, “
Experimental Testing of Cool Colored Thin Layer Asphalt and Estimation of Its Potential to Improve the Urban Microclimate
,”
Build. Environ.
, Vol. 
46
, No. 
1
,
2011
, pp. 
38
44
, https://doi.org/10.1016/j.buildenv.2010.06.014
32.
Synnefa
,
A.
,
Santamouris
,
M.
, and
Apostolakis
,
K.
, “
On the Development, Optical Properties and Thermal Performance of Cool Colored Coatings for the Urban Environment
,”
Sol. Energy
, Vol. 
81
, No. 
4
,
2007
, pp. 
488
497
, https://doi.org/10.1016/j.solener.2006.08.005
33.
Guerrini
,
G. L.
and
Peccati
,
E.
, “
Photocatalytic Cementitious Roads for Depollution
,” presented at the
International RILEM Symposium on Photocatalysis, Environment and Construction Materials
, Florence, Italy, Oct. 8–9,
2007
,
International Union of Laboratories and Experts in Construction Materials, Systems and Structures
,
Paris, France
, pp. 
179
186
.
34.
Boonen
,
E.
and
Beeldens
,
A.
, “
Photocatalytic Roads: from Lab Tests to Real Scale Applications
,”
Eur. Transp. Rev.
, Vol. 
5
, No. 
2
,
2013
, pp. 
79
89
, https://doi.org/10.1007/s12544-012-0085-6
35.
Osborn
,
D.
,
Hassan
,
M. M.
, and
Dylla
,
H.
, “
Quantification of Reduction of Nitrogen Oxides by Nitrate Accumulation on Titanium Dioxide Photocatalytic Concrete Pavement
,”
Transp. Res. Rec.
, Vol. 
2290
,
2012
, pp. 
147
153
, https://doi.org/10.3141/2290-19
36.
National Concrete Pavement Technology Center
Environmental Impact Benefits with “TX Active” Concrete Pavement in Missouri DOT Two-Lift Highway Construction Demonstration
,
Iowa State University
,
Ames, IA
,
2012
, 119p.
37.
Sen
,
S.
,
King
,
D.
, and
Roesler
,
J.
, “
Structural and Environmental Benefits of Concrete Inlays for Pavement Preservation
,”
Airfield and Highway Pavements 2015
,
American Society of Civil Engineers
,
Reston, VA
,
2015
, pp. 
697
707
.
38.
Howell
,
J. R.
,
Siegel
,
R.
, and
Menguc
,
P. M.
,
Thermal Radiation Heat Transfer
,
CRC Press
,
Boca Raton, FL
,
2010
, 987p.
39.
National Climatic Data Center “Quality Controlled Local Climatological Data,” 2014, https://web.archive.org/web/20180304001355/https://www.ncdc.noaa.gov/cdo-web/datatools/lcd (accessed 10 Dec.
2014
).
40.
Acker
,
J. G.
and
Leptoukh
,
G.
, “
Online Analysis Enhances Use of NASA Earth Science Data
,”
Earth Space Sci.
, Vol. 
88
, No. 
2
,
2007
, pp. 
14
17
.
41.
National Oceanic and Atmospheric Administration “ESRL Solar Geometry Calculator,” https://web.archive.org/web/20180304001304/https://www.esrl.noaa.gov/gmd/grad/antuv/SolarCalc.jsp (accessed 5 June
2016
).
This content is only available via PDF.
You do not currently have access to this content.