Abstract

The detection performance of a walk-through metal detector (WTMD) is affected not only by the electromagnetic properties and size and shape of the test objects, but potentially also by the type of motion of the test object through the portal of the WTMD. This motion, it has been argued, can contribute to the uncertainty in detecting threat objects being carried through the WTMD. Typical laboratory-based testing uses a robotic system, or similar, to push a test object through the portal with a trajectory that is a straight line and has a constant velocity. This testing, although reproducible and accurate, does not test for those trajectories the are representative of natural body motion. We report the effects of nonrectilinear trajectories on the detection performance of WTMDs.

References

1.
“Walk-Through Metal Detectors for Use in Concealed Weapon and Contraband Detection. NIJ Standard 0601.02,” National Institute of Justice, 2003, https://web.archive.org/web/20180514172949/https://www.ncjrs.gov/pdffiles1/nij/193510.pdf, accessed 14 May
2018
.
2.
ASTM F1468 - 04a(2010)
Standard Practice for Evaluation of Metallic Weapons Detectors for Controlled Access Search and Screening
,
ASTM International
,
West Conshohocken, PA
,
2010
, www.astm.org
3.
Nelson
,
C.
,
Chaudhary
,
V.
,
Edman
,
J.
, and
Kantor
,
P.
, “
Walk-Through Metal Detectors for Stadium Security
,” presented at the
2016 IEEE Symposium on Technologies for Homeland Security
, Waltham, MA, May 10–11, 2016,
Institute of Electrical and Electronics Engineers
,
Piscataway, NJ
, pp. 
1
6
.
4.
Nelson
,
C.
,
Kantor
,
P.
,
Nakamura
,
B.
,
Ricks
,
B.
,
Whylaw
,
R.
,
Egan
,
D.
,
Matlin
,
A.
,
Roberts
,
F.
,
Tobia
,
M.
, and
Young
,
M.
, “
Experimental Designs for Testing Metal Detectors at a Large Sports Stadium
,” presented at the
2015 IEEE Symposium on Technologies for Homeland Security
, Waltham, MA, April 14–15,
2015
,
Institute of Electrical and Electronics Engineers
,
Piscataway, NJ
, pp. 
1
7
.
5.
Skorupski
,
J.
and
Uchroński
,
P.
, “
A Fuzzy Model for Evaluating Metal Detection Equipment at Airport Security Screening Checkpoints
,”
Int. J. Crit. Infrastruct. Prot.
, Vol. 
16
,
2017
, pp. 
39
48
, https://doi.org/10.1016/j.ijcip.2016.11.001
6.
Gao
,
P.
,
Collins
,
L.
,
Garber
,
P. M.
,
Geng
,
N.
, and
Carin
,
L.
, “
Classification of Landmine-like Metal Targets Using Wideband Electromagnetic Induction
,”
IEEE Trans. Geosci. Remote Sens.
, Vol. 
38
, No. 
3
,
2000
, pp. 
1352
1361
, https://doi.org/10.1109/36.843029
7.
Won
,
I. J.
,
Keiswetter
,
D. A.
, and
Bell
,
T. H.
, “
Electromagnetic Induction Spectroscopy for Clearing Landmines
,”
IEEE Trans. Geosci. Remote Sens.
, Vol. 
39
, No. 
4
,
2001
, pp. 
703
709
, https://doi.org/10.1109/36.917876
8.
Scott
,
W. R.
, “
Broadband Array of Electromagnetic Induction Sensors for Detecting Buried Landmines
,” presented at the
2008 IEEE International Geoscience & Remote Sensing Symposium
, Boston, MA, July 7–11,
2008
,
Institute of Electrical and Electronics Engineers
,
Piscataway, NJ
, pp. 
II-375
II-378
.
9.
Bell
,
T. H.
,
Barrow
,
B. J.
, and
Miller
,
J. T.
, “
Subsurface Discrimination Using Electromagnetic Induction Sensors
,”
IEEE Trans. Geosci. Remote Sens.
, Vol. 
39
, No. 
6
,
2001
, pp. 
1286
1293
, https://doi.org/10.1109/36.927451
10.
Miller
,
J. T.
,
Bell
,
T. H.
,
Soukup
,
J.
, and
Keiswetter
,
D.
, “
Simple Phenomenological Models for Wideband Frequency-Domain Electromagnetic Induction
,”
IEEE Trans. Geosci. Remote Sens.
, Vol. 
39
, No. 
6
,
2001
, pp. 
1294
1298
, https://doi.org/10.1109/36.927452
11.
Zhang
,
Y.
,
Collins
,
L.
,
Yu
,
H.
,
Baum
,
C. E.
,
Carin
,
L.
, “
Sensing of Unexploded Ordinance with Magnetometer and Induction Data: Theory and Signal Processing
,”
IEEE Trans. Geosci. Remote Sens.
, Vol. 
41
, No. 
5
,
2003
, pp. 
1005
1015
, https://doi.org/10.1109/TGRS.2003.810922
12.
Nelson
,
H. H.
and
McDonald
,
J. R.
, “
Multisensor Towed Array Detection System for UXO Detection
,”
IEEE Trans. Geosci. Remote Sens.
, Vol. 
39
, No. 
6
,
2001
, pp. 
1139
1145
, https://doi.org/10.1109/36.927427
13.
Marsh
,
L. A.
,
Ktistis
,
C.
,
Järvi
,
A.
,
Armitage
,
D. W.
, and
Peyton
,
A. J.
, “
Three-Dimensional Object Location and Inversion of the Magnetic Polarizability Tensor at a Single Frequency Using a Walk-Through Metal Detector
,”
Meas. Sci. Technol.
, Vol. 
24
, No. 
4
,
2013
, https://doi.org/10.1088/0957-0233/24/4/045102
14.
Ledger
,
P. D.
and
Lionheart
,
W. R. B.
, “
Understanding the Magnetic Polarizability Tensor
,”
IEEE Trans. Magn.
, Vol. 
52
, No. 
5
,
2016
, pp. 
1
16
.
15.
Troje
,
N. F.
, “
Decomposing Biological Motion: A Framework for Analysis and Synthesis of Human Gait Patterns
,”
J. Vision
, Vol. 
2
, No. 
5
,
2002
, pp. 
371
387
, https://doi.org/10.1167/2.5.2
16.
Troje
,
N. F
., “
Retrieving Information from Human Movement Patterns
,”
Understanding Events: From Perception to Action
;
Shipley
T. F.
and
Zacks
J. M.
, Eds.,
Oxford University Press
,
Oxford, United Kingdom
,
2008
, pp. 
308
334
.
17.
Janezic
,
M. D.
,
Kaiser
,
R. F.
,
Baker-Jarvis
,
J.
, and
Free
,
G.
, “DC Conductivity Measurements of Metals,” NIST Technical Note 1531, U.S. Department of Commerce, Washington, DC,
2004
, https://doi.org/10.6028/NIST.TN.1531
18.
Janezic
,
M. D.
and
Baker-Jarvis
,
J.
, “Relative Permeability Measurements for Metal Detector Research,” NIST Technical Note 1532, U.S. Department of Commerce, Washington, DC,
2004
, https://doi.org/10.6028/NIST.TN.1532
This content is only available via PDF.
You do not currently have access to this content.