Abstract

Analyzing the thermomechanical reliability of the solid oxide cell (SOC) stack requires precise measurement of the mechanical properties of the different components in the stack at operating conditions of the SOC. It is challenging to precisely characterize the time-dependent deformational properties of metallic components in the SOC stacks at the required level of stress and operational conditions (high temperature and controlled atmosphere). This work presents an improved methodology for characterizing the time-dependent, or viscoplastic, properties of metallic alloys used in the SOC stacks at a high temperature and in a controlled atmosphere. The methodology uses a mechanical loading rig designed to apply variable and constant loads on samples within a gas-tight high temperature furnace. In addition, a unique, remotely installed length measuring setup involving a laser micrometer is used to monitor deformations in the sample. Application of the methodology is exemplified by measurement of stress relaxation, creep, and constant strain rate behaviors of a high-temperature alloy used in the construction of SOC metallic interconnects at different temperatures. Furthermore, measurements using the proposed methodology are also verified by the literature and experiments conducted using other machines.

References

1.
Nakajo
,
A.
,
Wuillemin
,
Z.
,
Van Herle
,
J.
, and
Favrat
,
D.
, “
Simulation of Thermal Stresses in Anode-Supported Solid Oxide Fuel Cell Stacks. Part I: Probability of Failure of the Cells
,”
J. Power Sources
, Vol. 
193
, No. 
1
,
2009
, pp. 
203
215
, https://doi.org/10.1016/j.jpowsour.2008.12.050
2.
Nakajo
,
A.
,
Wuillemin
,
Z.
,
Van Herle
,
J.
, and
Favrat
,
D.
, “
Simulation of Thermal Stresses in Anode-Supported Solid Oxide Fuel Cell Stacks. Part II: Loss of Gas-Tightness, Electrical Contact and Thermal Buckling
,”
J. Power Sources
, Vol. 
193
, No. 
1
,
2009
, pp. 
216
226
, https://doi.org/10.1016/j.jpowsour.2008.12.039
3.
Peksen
,
M.
, “
3D Thermomechanical Behaviour of Solid Oxide Fuel Cells Operating in Different Environments
,”
Int. J. Hydrogen Energy
, Vol. 
38
, No. 
30
,
2013
, pp. 
13408
13418
, https://doi.org/10.1016/j.ijhydene.2013.07.112
4.
Peksen
,
M.
, “
Numerical Thermomechanical Modelling of Solid Oxide Fuel Cells
,”
Prog. Energy Combust. Sci.
, Vol. 
48
,
2015
, pp. 
1
20
, https://doi.org/10.1016/j.pecs.2014.12.001
5.
Peksen
,
M.
, “
3D Transient Multiphysics Modelling of a Complete High Temperature Fuel Cell System Using Coupled CFD and FEM
,”
Int. J. Hydrogen Energy
, Vol. 
39
, No. 
10
,
2014
, pp. 
5137
5147
, https://doi.org/10.1016/j.ijhydene.2014.01.063
6.
Lu
,
Z.
,
Xia
,
G.
,
Templeton
,
J. D.
,
Li
,
X.
,
Nie
,
Z.
,
Yang
,
Z.
, and
Stevenson
,
J. W.
, “
Development of Ni1-xCoxO as the Cathode/Interconnect Contact for Solid Oxide Fuel Cells
,”
Electrochem. Commun.
, Vol. 
13
, No. 
6
,
2011
, pp. 
642
645
, https://doi.org/10.1016/j.elecom.2011.03.034
7.
Molla
,
T. T.
,
Kwok
,
K.
, and
Frandsen
,
H. L.
, “
Efficient Modeling of Metallic Interconnects for Thermo-Mechanical Simulation of SOFC Stacks: Homogenized Behaviors and Effect of Contact
,”
Int. J. Hydrogen Energy
, Vol. 
41
, No. 
15
,
2016
, pp. 
6433
6444
, https://doi.org/10.1016/j.ijhydene.2016.03.002
8.
Chiu
,
Y. T.
,
Lin
,
C. K.
, and
Wu
,
J. C.
, “
High-Temperature Tensile and Creep Properties of a Ferritic Stainless Steel for Interconnect in Solid Oxide Fuel Cell
,”
J. Power Sources
, Vol. 
196
, No. 
4
,
2011
, pp. 
2005
2012
, https://doi.org/10.1016/j.jpowsour.2010.09.083
9.
Moltzan
,
H. J.
, “
Thermomechanical Analysis (TMA)
,”
Characterization of Integrated Circuit Packaging Materials
,
1993
, pp. 
252
254
, https://doi.org/10.1016/B978-0-7506-9267-0.50040-5
10.
Material Testing Systems “
MTS 810 & 858 Material Testing Systems
,” MTS Systems Corporation, Eden Prairie, MN,
2006
, pp. 
1
28
.
11.
Frandsen
,
H. L.
,
Curran
,
D. J.
,
Rasmussen
,
S.
, and
Hendriksen
,
P. V.
, “
High Throughput Measurement of High Temperature Strength of Ceramics in Controlled Atmosphere and Its Use on Solid Oxide Fuel Cell Anode Supports
,”
J. Power Sources
, Vol. 
258
,
2014
, pp. 
195
203
, https://doi.org/10.1016/j.jpowsour.2014.02.036
12.
Ukai
,
S.
,
Okuda
,
T.
,
Fujiwara
,
M.
,
Kobayashi
,
T.
,
Mizuta
,
S.
, and
Nakashima
,
H.
, “
Characterization of High Temperature Creep Properties in Recrystallized 12Cr-ODS Ferritic Steel Claddings
,”
J. Nucl. Sci. Technol.
, Vol. 
39
, No. 
8
,
2002
, pp. 
872
879
, https://doi.org/10.1080/18811248.2002.9715271
13.
Kuhn
,
B.
,
Talik
,
M.
,
Niewolak
,
L.
,
Zurek
,
J.
,
Hattendorf
,
H.
,
Ennis
,
P. J.
,
Quadakkers
,
W. J.
,
Beck
,
T.
, and
Singheiser
,
L.
, “
Development of High Chromium Ferritic Steels Strengthened by Intermetallic Phases
,”
Mater. Sci. Eng. A
, Vol. 
594
,
2014
, pp. 
372
380
, https://doi.org/10.1016/j.msea.2013.11.048
14.
Kuhn
,
B.
,
Jimenez
,
C. A.
,
Niewolak
,
L.
,
Hüttel
,
T.
,
Beck
,
T.
,
Hattendorf
,
H.
,
Singheiser
,
L.
, and
Quadakkers
,
W. J.
, “
Effect of Laves Phase Strengthening on the Mechanical Properties of High Cr Ferritic Steels for Solid Oxide Fuel Cell Interconnect Application
,”
Mater. Sci. Eng. A
, Vol. 
528
, No. 
18
,
2011
, pp. 
5888
5899
, https://doi.org/10.1016/j.msea.2011.03.112
15.
Molla
,
T. T.
,
Kwok
,
K.
, and
Frandsen
,
H. L.
, “
Transient Deformational Properties of High Temperature Alloys Used in Solid Oxide Fuel Cell Stacks
,”
J. Power Sources
, Vol. 
351
,
2017
, pp. 
8
16
, https://doi.org/10.1016/j.jpowsour.2017.03.059
16.
Thyssenkrupp VDM, “Crofer 22 APU Material Data Sheet,” No. 4046, 2010.
17.
Boccaccini
,
D. N.
,
Frandsen
,
H. L.
,
Sudireddy
,
B. R.
,
Blennow
,
P.
,
Persson
,
Å. H.
,
Kwok
,
K.
, and
Hendriksen
,
P. V.
, “
Creep Behaviour of Porous Metal Supports for Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
, Vol. 
39
, No. 
36
,
2014
, pp. 
21569
21580
, https://doi.org/10.1016/j.ijhydene.2014.07.138
18.
Nakajo
,
A.
,
Mueller
,
F.
,
Brouwer
,
J.
,
Van Herle
,
J.
, and
Favrat
,
D.
, “
Mechanical Reliability and Durability of SOFC Stacks. Part II: Modelling of Mechanical Failures During Ageing and Cycling
,”
Int. J. Hydrogen Energy
, Vol. 
37
, No. 
11
,
2012
, pp. 
9269
9286
, https://doi.org/10.1016/j.ijhydene.2012.03.023
19.
Nakajo
,
A.
,
Mueller
,
F.
,
Brouwer
,
J.
,
Van Herle
,
J.
, and
Favrat
,
D.
, “
Mechanical Reliability and Durability of SOFC Stacks. Part I: Modelling of the Effect of Operating Conditions and Design Alternatives on the Reliability
,”
Int. J. Hydrogen Energy
, Vol. 
37
, No. 
11
,
2012
, pp. 
9249
9268
, https://doi.org/10.1016/j.ijhydene.2012.03.043
20.
Lin
,
C. K.
,
Chen
,
T. T.
,
Chyou
,
Y. P.
, and
Chiang
,
L. K.
, “
Thermal Stress Analysis of a Planar SOFC Stack
,”
J. Power Sources
, Vol. 
164
, No. 
1
,
2007
, pp. 
238
251
, https://doi.org/10.1016/j.jpowsour.2006.10.089
This content is only available via PDF.
You do not currently have access to this content.