Abstract
In this paper, we considered the problem of the estimation R = P(Y < X) that was defined as a life of a component, and which has strength X and is subjected to stress Y. We derive R = P(Y < X) when X and Y are independent beta Gompertz random variables. The reliability is estimated using two estimation methods, they were the maximum likelihood and Bayes estimator. A simulation study was used to compare the two different estimators. Real data was used as a practical application of the proposed procedure.
Issue Section:
Technical Papers
References
1.
Jafari
, A.
, Tahmasebi
, S.
, and Alizadeh
, M.
, “The Beta-Gompertz Distribution
,” Rev. Colombiana Estadist.
, Vol. 37
, No. 1
, 2014
, pp. 139
–156
.2.
Johnson
, N.L.
, Kotz
, S.
, and Balakrishnan
, N.
, Continuous Univariate Distributions
, 2nd ed., John Wiley and Sons
, New York
, 1995.3.
Brown
, K.
and Forbes
, W.
, “A Mathematical Model of Aging Processes
,” J. Gerontol.
, Vol. 29
, No. 1
, 1974
, pp. 46
–51
, https://doi.org/10.1093/geronj/29.1.464.
Ohishi
, K.
, Okamura
, H.
, and Dohi
, T.
, “Gompertz Software Reliability Model: Estimation Algorithm and Empirical Validation
,” J. Syst. Softw.
, Vol. 82
, No. 3
, 2009
, pp. 535
–543
, https://doi.org/10.1016/j.jss.2008.11.8405.
Economos
, A.C.
, “Rate of Aging, Rate of Dying and the Mechanism of Mortality
,” Arch. Gerontol. Geriatr.
, Vol. 1
, No. 1
, 1982
, pp. 46
–51
, https://doi.org/10.1016/0167-4943(82)90003-66.
Bemmaor
, A.C.
and Glady
, N.
, “Modeling Purchasing Behavior With Sudden ‘Death’: A Flexible Customer Lifetime Model
,” Manag. Sci.
, Vol. 58
, No. 5
, 2012
, pp. 1012
–1021
, https://doi.org/10.1287/mnsc.1110.14617.
Gupta
, R.D.
and Kundu
, D.
, “Generalized Exponential Distributions
,” Aust. NZ J. Stat.
, Vol. 41
, No. 2
, 1999
, pp. 173
–188
, https://doi.org/10.1111/1467-842X.000728.
El-Gohary
, A.
and Al-Otaibi
, A.N.
, “The Generalized Gompertz Distribution
,” Appl. Math. Model.
, Vol. 37
, No. 1–2
, 2013
, pp. 13
–24
, https://doi.org/10.1016/j.apm.2011.05.0179.
Nadarajah
, S.
and Kotz
, S.
, “The Beta Exponential Distribution
,” Reliab. Eng. Syst. Safe.
, Vol. 91
, No. 6
, 2006
, pp. 689
–697
, https://doi.org/10.1016/j.ress.2005.05.00810.
Birnbaum
, Z.W.
, “On a Use of the Mann-Whitney Statistic
,” presented at the Third Berkeley Symposium on Mathematical Statistics and Probability
, Berkeley, CA, January 13–17, 1956
, University of California Press
, Berkeley, CA
.11.
Church
, J.D.
and Harris
, B.
, “The Estimation of Reliability From Stress Strength Relationships
,” Technometrics
, Vol. 12
, No. 1
, 1970
, pp. 49
–54
, https://doi.org/10.1080/00401706.1970.1048863312.
Chao
, A.
, “On Comparing Estimators of P(Y < X) in the Exponential Case
,” IEEE Trans. Reliab.
, Vol. 31
, No. 4
, 1982
, pp. 389
–392
, https://doi.org/10.1109/TR.1982.522138713.
Awad
, A.M.
and Gharraf
, M.K.
, “Estimation of P(Y < X) in the Burr Case: A Comparative Study
,” Commun. Stat. Simul. C.
, Vol. 15
, No. 2
, 1986
, pp. 389
–403
, https://doi.org/10.1080/0361091860881251414.
Constantine
, K.
and Karson
, M.
, “Estimators of P(Y < X) in the Gamma Case
,” Commun. Stat. Simul. C
, Vol. 15
, 1986
, pp. 365
–388
, https://doi.org/10.1080/0361091860881251315.
Surles
, J.G.
and Padgett
, W.J.
, “Inference for Reliability and Stress-Strength for a Scaled Burr-Type X Distribution
,” Lifetime Data Anal.
, Vol. 7
, No. 2
, 2001
, pp. 187
–200
, https://doi.org/10.1023/A:101135292399016.
Mokhlis
, N.A.
, “Reliability of a Stress-Strength Model With Burr Type III Distributions
,” Commun. Stat. Theor. M.
, Vol. 34
, No. 7
, 2005
, pp. 1643
–1657
, https://doi.org/10.1081/STA-20006318317.
Raqab
, M.Z.
and Kundu
, D.
, “Comparison of Different Estimators of P(Y < X) for a Scaled Burr Type X Distribution
,” Commun. Stat. Simul. C
, Vol. 34
, No. 2
, 2006
, pp. 465
–483
, https://doi.org/10.1081/SAC-20005574118.
Kundu
, D.
and Gupta
, R.D.
, “Estimation of P(Y < X) for the Generalized Exponential Distribution
,” Metrika
, Vol. 61
, 2005
, pp. 291
–308
, https://doi.org/10.1007/s00184040034519.
Krishnamoorthy
, K.
, Mukherjee
, S.
, and Guo
, H.
, “Inference on Reliability in Two-Parameter Exponential Stress-Strength Model
,” Metrika
, Vol. 6
, 2007
, pp. 261
–273
.20.
Saraçoglu
, B.
, Kaya
, M.F.
, and Abd-Elfattah
, A.M.
, “Comparison of Estimators for Stress-Strength Reliability in the Gompertz Case
,” Hacettepe J. Math Stat.
, Vol. 38
, No. 3
, 2009
, pp. 339
–349
.21.
Shahsanaei
, F.
and Daneshkhah
, A.
, “Estimation of Stress Strength Model in Generalized Linear Failure Rate Distribution,” ArXiv Preprint 1312:0401 v1, 2013
, https://arxiv.org/pdf/1312.0401.pdf22.
Al-Mutairi
, D.K.
, Ghitany
, M.E.
, and Kundu
, D.
, “Inferences on Stress-Strength Reliability From Lindley Distributions
,” Commun. Stat. Theor. M
, Vol. 42
, No. 8
, 2013
, pp. 1443
–1463
, https://doi.org/10.1080/03610926.2011.56301123.
Ghitany
, M.E.
, Al-Mutairi
, D.K.
, and Aboukhamseen
, S.M.
, “Estimation of the Reliability of a Stress-Strength System From Power Lindley Distributions
,” Commun. Stat. Simul. C
, Vol. 44
, No. 1
, 2015
, pp. 118
–136
, https://doi.org/10.1080/03610918.2013.76791024.
Najarzadegan
, H.
, Babaii
, S.
, Rezaei
, S.
, and Nadarajah
, S.
, “Estimation of P(Y < X) for the Levy Distribution
,” Hacettepe J. Math Stat.
, Vol. 45
, No. 3
, 2016
, pp. 957
–972
.25.
Nadarajah
, S.
, “Reliability for Beta Models
,” Serdica Math. J.
, Vol. 28
, No. 3
, 2002
, pp. 267
–282
.26.
Lindley
, D.V.
, “Approximation Bayesian Methods
,” Trabajos Estad.
, Vol. 21
, 1980
, pp. 223
–237
.27.
Badar
, M.G.
and Priest
, A.M.
, “Statistical Aspects of Fiber and Bundle Strength in Hybrid Composites
,” presented at the Progress in Science and Engineering Composites Conference, ICCM-IV
, Tokyo, Japan, October 25–28, 1982
, Hayashi
T.
, Kawata
K.
, and Umekawa
S.
, Eds., Japan Society for Composite Materials
, Tokyo, Japan
, pp. 1129
–1136
.28.
Raqab
, M.Z.
and Kundu
, D.
, “Comparison of Different Estimators of P(Y < X) for a Scaled Burr Type X Distribution
,” Commun. Stat. Simul. C
, Vol. 34
, No. 2
, 2005
, pp. 465
–483
, https://doi.org/10.1081/SAC-20005574129.
Ali
, M.M.
, Pal
, M.
, and Woo
, J.
, “Estimation of P(Y < X) in a Four-Parameter Generalized Gamma Distribution
,” Aust. J. Stat.
, Vol. 41
, No. 3
, 2012
, pp. 197
–210
.
This content is only available via PDF.
All rights reserved. This material may not be reproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ASTM International.
You do not currently have access to this content.