Abstract

In this paper, we considered the problem of the estimation R = P(Y < X) that was defined as a life of a component, and which has strength X and is subjected to stress Y. We derive R = P(Y < X) when X and Y are independent beta Gompertz random variables. The reliability is estimated using two estimation methods, they were the maximum likelihood and Bayes estimator. A simulation study was used to compare the two different estimators. Real data was used as a practical application of the proposed procedure.

References

1.
Jafari
,
A.
,
Tahmasebi
,
S.
, and
Alizadeh
,
M.
, “
The Beta-Gompertz Distribution
,”
Rev. Colombiana Estadist.
, Vol. 
37
, No. 
1
,
2014
, pp. 
139
156
.
2.
Johnson
,
N.L.
,
Kotz
,
S.
, and
Balakrishnan
,
N.
,
Continuous Univariate Distributions
, 2nd ed.,
John Wiley and Sons
,
New York
, 1995.
3.
Brown
,
K.
and
Forbes
,
W.
, “
A Mathematical Model of Aging Processes
,”
J. Gerontol.
, Vol. 
29
, No. 
1
,
1974
, pp. 
46
51
, https://doi.org/10.1093/geronj/29.1.46
4.
Ohishi
,
K.
,
Okamura
,
H.
, and
Dohi
,
T.
, “
Gompertz Software Reliability Model: Estimation Algorithm and Empirical Validation
,”
J. Syst. Softw.
, Vol. 
82
, No. 
3
,
2009
, pp. 
535
543
, https://doi.org/10.1016/j.jss.2008.11.840
5.
Economos
,
A.C.
, “
Rate of Aging, Rate of Dying and the Mechanism of Mortality
,”
Arch. Gerontol. Geriatr.
, Vol. 
1
, No. 
1
,
1982
, pp. 
46
51
, https://doi.org/10.1016/0167-4943(82)90003-6
6.
Bemmaor
,
A.C.
and
Glady
,
N.
, “
Modeling Purchasing Behavior With Sudden ‘Death’: A Flexible Customer Lifetime Model
,”
Manag. Sci.
, Vol. 
58
, No. 
5
,
2012
, pp. 
1012
1021
, https://doi.org/10.1287/mnsc.1110.1461
7.
Gupta
,
R.D.
and
Kundu
,
D.
, “
Generalized Exponential Distributions
,”
Aust. NZ J. Stat.
, Vol. 
41
, No. 
2
,
1999
, pp. 
173
188
, https://doi.org/10.1111/1467-842X.00072
8.
El-Gohary
,
A.
and
Al-Otaibi
,
A.N.
, “
The Generalized Gompertz Distribution
,”
Appl. Math. Model.
, Vol. 
37
, No. 
1–2
,
2013
, pp. 
13
24
, https://doi.org/10.1016/j.apm.2011.05.017
9.
Nadarajah
,
S.
and
Kotz
,
S.
, “
The Beta Exponential Distribution
,”
Reliab. Eng. Syst. Safe.
, Vol. 
91
, No. 
6
,
2006
, pp. 
689
697
, https://doi.org/10.1016/j.ress.2005.05.008
10.
Birnbaum
,
Z.W.
, “
On a Use of the Mann-Whitney Statistic
,” presented at the
Third Berkeley Symposium on Mathematical Statistics and Probability
, Berkeley, CA, January 13–17,
1956
,
University of California Press
,
Berkeley, CA
.
11.
Church
,
J.D.
and
Harris
,
B.
, “
The Estimation of Reliability From Stress Strength Relationships
,”
Technometrics
, Vol. 
12
, No. 
1
,
1970
, pp. 
49
54
, https://doi.org/10.1080/00401706.1970.10488633
12.
Chao
,
A.
, “
On Comparing Estimators of P(Y < X) in the Exponential Case
,”
IEEE Trans. Reliab.
, Vol. 
31
, No. 
4
,
1982
, pp. 
389
392
, https://doi.org/10.1109/TR.1982.5221387
13.
Awad
,
A.M.
and
Gharraf
,
M.K.
, “
Estimation of P(Y < X) in the Burr Case: A Comparative Study
,”
Commun. Stat. Simul. C.
, Vol. 
15
, No. 
2
,
1986
, pp. 
389
403
, https://doi.org/10.1080/03610918608812514
14.
Constantine
,
K.
and
Karson
,
M.
, “
Estimators of P(Y < X) in the Gamma Case
,”
Commun. Stat. Simul. C
, Vol. 
15
,
1986
, pp. 
365
388
, https://doi.org/10.1080/03610918608812513
15.
Surles
,
J.G.
and
Padgett
,
W.J.
, “
Inference for Reliability and Stress-Strength for a Scaled Burr-Type X Distribution
,”
Lifetime Data Anal.
, Vol. 
7
, No. 
2
,
2001
, pp. 
187
200
, https://doi.org/10.1023/A:1011352923990
16.
Mokhlis
,
N.A.
, “
Reliability of a Stress-Strength Model With Burr Type III Distributions
,”
Commun. Stat. Theor. M.
, Vol. 
34
, No. 
7
,
2005
, pp. 
1643
1657
, https://doi.org/10.1081/STA-200063183
17.
Raqab
,
M.Z.
and
Kundu
,
D.
, “
Comparison of Different Estimators of P(Y < X) for a Scaled Burr Type X Distribution
,”
Commun. Stat. Simul. C
, Vol. 
34
, No. 
2
,
2006
, pp. 
465
483
, https://doi.org/10.1081/SAC-200055741
18.
Kundu
,
D.
and
Gupta
,
R.D.
, “
Estimation of P(Y < X) for the Generalized Exponential Distribution
,”
Metrika
, Vol. 
61
,
2005
, pp. 
291
308
, https://doi.org/10.1007/s001840400345
19.
Krishnamoorthy
,
K.
,
Mukherjee
,
S.
, and
Guo
,
H.
, “
Inference on Reliability in Two-Parameter Exponential Stress-Strength Model
,”
Metrika
, Vol. 
6
,
2007
, pp. 
261
273
.
20.
Saraçoglu
,
B.
,
Kaya
,
M.F.
, and
Abd-Elfattah
,
A.M.
, “
Comparison of Estimators for Stress-Strength Reliability in the Gompertz Case
,”
Hacettepe J. Math Stat.
, Vol. 
38
, No. 
3
,
2009
, pp. 
339
349
.
21.
Shahsanaei
,
F.
and
Daneshkhah
,
A.
, “Estimation of Stress Strength Model in Generalized Linear Failure Rate Distribution,” ArXiv Preprint 1312:0401 v1,
2013
, https://arxiv.org/pdf/1312.0401.pdf
22.
Al-Mutairi
,
D.K.
,
Ghitany
,
M.E.
, and
Kundu
,
D.
, “
Inferences on Stress-Strength Reliability From Lindley Distributions
,”
Commun. Stat. Theor. M
, Vol. 
42
, No. 
8
,
2013
, pp. 
1443
1463
, https://doi.org/10.1080/03610926.2011.563011
23.
Ghitany
,
M.E.
,
Al-Mutairi
,
D.K.
, and
Aboukhamseen
,
S.M.
, “
Estimation of the Reliability of a Stress-Strength System From Power Lindley Distributions
,”
Commun. Stat. Simul. C
, Vol. 
44
, No. 
1
,
2015
, pp. 
118
136
, https://doi.org/10.1080/03610918.2013.767910
24.
Najarzadegan
,
H.
,
Babaii
,
S.
,
Rezaei
,
S.
, and
Nadarajah
,
S.
, “
Estimation of P(Y < X) for the Levy Distribution
,”
Hacettepe J. Math Stat.
, Vol. 
45
, No. 
3
,
2016
, pp. 
957
972
.
25.
Nadarajah
,
S.
, “
Reliability for Beta Models
,”
Serdica Math. J.
, Vol. 
28
, No. 
3
,
2002
, pp. 
267
282
.
26.
Lindley
,
D.V.
, “
Approximation Bayesian Methods
,”
Trabajos Estad.
, Vol. 
21
,
1980
, pp. 
223
237
.
27.
Badar
,
M.G.
and
Priest
,
A.M.
, “
Statistical Aspects of Fiber and Bundle Strength in Hybrid Composites
,” presented at the
Progress in Science and Engineering Composites Conference, ICCM-IV
, Tokyo, Japan, October 25–28,
1982
,
Hayashi
T.
,
Kawata
K.
, and
Umekawa
S.
, Eds.,
Japan Society for Composite Materials
,
Tokyo, Japan
, pp. 
1129
1136
.
28.
Raqab
,
M.Z.
and
Kundu
,
D.
, “
Comparison of Different Estimators of P(Y < X) for a Scaled Burr Type X Distribution
,”
Commun. Stat. Simul. C
, Vol. 
34
, No. 
2
,
2005
, pp. 
465
483
, https://doi.org/10.1081/SAC-200055741
29.
Ali
,
M.M.
,
Pal
,
M.
, and
Woo
,
J.
, “
Estimation of P(Y < X) in a Four-Parameter Generalized Gamma Distribution
,”
Aust. J. Stat.
, Vol. 
41
, No. 
3
,
2012
, pp. 
197
210
.
This content is only available via PDF.
You do not currently have access to this content.