Abstract
Linear and mass attenuation coefficients, effective atomic number and electron densities, mean free paths and half-value layer (HVL), and tenth-value layer (TVL) values of PbO, barite, colemanite, tincal, and ulexite were obtained for 80.1, 302.9, 356.0, 661.7, and 1250.0 keV gamma-ray energies, respectively, using MCNP-4C and the WinXCom program and compared with available experimental data. The relative deviation (RD) values range from −11.61 % to 18.16 % and −7.83 % to 18.51 % for MCNP and WinXCom results for all samples. Only tincal boron ore showed an unexpected RD value of up to 19 %. MCNP-4C results showed better agreement with experimental data in comparison with the WinXCom program.
Issue Section:
Research Papers
References
1.
Sharifi
, S.
, Bagheri
, R.
, and Shirmardi
, S. P.
, “Comparison of Shielding Properties for Ordinary, Barite, Serpentine and Steel–Magnetite Concretes Using MCNP-4C Code and Available Experimental Results
,” Ann. Nucl. Energy
, Vol. 53
, No. 3
, 2013
, pp. 529
–534
. https://doi.org/10.1016/j.anucene.2012.09.0152.
Shirmardi
, S. P.
, Shamsaei
, M.
, and Naserpour
, M.
, “Comparison of Photon Attenuation Coefficients of Various Barite Concretes and Lead by MCNP Code, XCOM and Experimental Data
,” Ann. Nucl. Energy
, Vol. 55
, No. 5
, 2013
, pp. 288
–291
. https://doi.org/10.1016/j.anucene.2013.01.0023.
Akkurt
, I.
, Akyıldırım
, H.
, Karipcin
, F.
, and Mavi
, B.
, “Chemical Corrosion on Gamma Ray Attenuation Properties of Barite Concrete
,” J. Saud. Chem. Soc.
, Vol. 16
, No. 2
, 2012
, pp. 199
–202
. https://doi.org/10.1016/j.jscs.2011.01.0034.
Manohara
, S. R.
, Hanagodimath
, S. M.
, and Gerward
, L.
, “Photon Interaction and Energy Absorption in Glass: A Transparent Gamma Ray Shield
,” J. Nucl. Mater.
, Vol. 393
, No. 3
, 2009
, pp. 465
–472
. https://doi.org/10.1016/j.jnucmat.2009.07.0015.
Singh
, K. J.
, Singh
, N.
, Kaundal
, R. S.
, and Singh
, K.
, “Gamma-Ray Shielding and Structural Properties of PbO–SiO2 Glasses
,” Nucl. Instrum. Methods B
, Vol. 266
, No. 6
, 2008
, pp. 944
–948
, https://doi.org/10.1016/j.nimb.2008.02.0046.
Bouzarjomehri
, F.
, Bayat
, T.
, Dashti
, R. M. H.
, Ghisari
, J.
, and Abdoli
, N.
, “60Co γ-Ray Attenuation Coefficient of Barite Concrete
,” Iran. J. Radiat. Res.
, Vol. 4
, No. 2
, 2006
, pp. 71
–75
.7.
Stankovic
, S. J.
, Ilic
, R. D.
, Jankovic
, K.
, Bojovic
, D.
, and Longar
, B.
, “Gamma Radiation Absorption Characteristics of Concrete With Components of Different Type Materials
,” Acta Phys. Pol. A
, Vol. 117
, No. 5
, 2010
, pp. 812
–816
. https://doi.org/10.12693/APhysPolA.117.8128.
Bashter
, I. I.
, “Calculation of Radiation Attenuation Coefficients for Shielding Concretes
,” Ann. Nucl. Energy
, Vol. 24
, No. 17
, 1997
, pp. 1389
–1401
. https://doi.org/10.1016/S0306-4549(97)00003-09.
Singh
, V. P.
and Badiger
, N. M.
, “Comprehensive Study of Energy Absorption and Exposure Buildup Factor for Concrete Shielding in Photon Energy Range 0.015–15 MeV up to 40 mfp Penetration Depth: Dependency of Density, Chemical Element, Photon Energy
,” Nucl. Energy Sci. Technol.
, Vol. 7
, No. 1
, 2012
, pp. 75
–99
. https://doi.org/10.1504/IJNEST.2012.04698710.
Singh
, V. P.
, Ali
, A. M.
, Badiger
, N. M.
, and El-Khayatt
, A. M.
, “Monte Carlo Simulation of Gamma Ray Shielding Parameters of Concretes
,” Nucl. Eng. Des.
, Vol. 265
, No. 5
, 2013
, pp. 1071
–1077
. https://doi.org/10.1016/j.nucengdes.2013.10.00811.
Kurudirek
, M.
, Türkmen
, İ.
, and Özdemir
, Y.
, “A Study of Photon Interaction in Some Building Materials: High-Volume Admixture of Blast Furnace Slag into Portland Cement
,” Radiat. Phys. Chem.
, Vol. 78
, No. 9
, 2009
, pp. 751
–759
. https://doi.org/10.1016/j.radphyschem.2009.03.07012.
El-Khayatt
, A. M.
, “Radiation Shielding of Concretes Containing Different Lime/Silica Ratios
,” Ann. Nucl. Energy
, Vol. 37
, No. 7
, 2010
, pp. 991
–995
. https://doi.org/10.1016/j.anucene.2010.03.00113.
İçelli
, O.
, Mann
, K. S.
, Yalçın
, Z.
, Orak
, S.
, and Karakaya
, V.
, “Investigation of Shielding Properties of Some Boron Compounds
,” Ann. Nucl. Energy
, Vol. 55
, No. 5
, 2013
, pp. 341
–350
. https://doi.org/10.1016/j.anucene.2012.12.02414.
Singh
, N.
, Singh
, K. J.
, Singh
, K.
, and Singh
, H.
, “Comparative Study of Lead Borate and Bismuth Lead Borate Glass Systems as Gamma-Radiation Shielding Materials
,” Nucl. Instrum. Meth. B
, Vol. 225
, No. 3
, 2005
, pp. 305
–309
, https://doi.org/10.1016/j.nimb.2004.05.01615.
Akkurt
, I.
, Akyıldırım
, H.
, Mavi
, B.
, Kilincarslan
, S.
, and Basyigit
, C.
, “Photon Attenuation Coefficients of Concrete Includes Barite in Different Rate
,” Ann. Nucl. Energy
, Vol. 37
, No. 7
, 2010
, pp. 910
–914
. https://doi.org/10.1016/j.anucene.2010.04.00116.
Un
, A.
and Sahin
, Y.
, “Determination of Mass Attenuation Coefficients, Effective Atomic and Electron Numbers, Mean Free Paths and Kermas for PbO, Barite and Some Boron Ores
,” Nucl. Instrum. Meth. B
, Vol. 269
, No. 13
, 2011
, pp. 1506
–1511
. https://doi.org/10.1016/j.nimb.2011.04.01117.
Singh
, N.
, Singh
, K. J.
, Singh
, K.
, and Singh
, H.
, “Gamma-Ray Attenuation Studies of PbO–BaO–B2O3 Glass System
,” Radiat. Meas.
, Vol. 41
, No. 1
, 2006
, pp. 84
–88
. https://doi.org/10.1016/j.radmeas.2004.09.00918.
Kirdsiri
, K.
, Kaewkhao
, J.
, Chanthima
, N.
, and Limsuwan
, P.
, “Comparative Study of Silicate Glasses Containing Bi2O3, PbO and BaO: Radiation Shielding and Optical Properties
,” Ann. Nucl. Energy
, Vol. 38
, No. 6
, 2011
, pp. 1438
–1441
. https://doi.org/10.1016/j.anucene.2011.01.03119.
Dunster
, H. J.
, Ellis
, R. E.
, Jones
, B. E.
, Jones
, E. W.
, and Rees
, J. M.
, “Handbook of Radiological Protection. Part 1: Data
,” Radioactive Substances Advisory Committee HMSO
, London
, 1971
.20.
Shultis
, J. K.
and Faw
, R. E.
, “An MCNP Primer
,” Department of Mechanical and Nuclear Engineering, Kansas State University
, Manhattan, KS
, 2010
.21.
Hubbell
, J. H.
and Seltzer
, S. M.
, “Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1–92 and 48 Additional Substances of Dosimetric Interest
,” NISTIR 5632
, National Institute of Standards and Technology
, Gaithersburg, MD
, 1995
.22.
Gerward
, L.
, Guilbert
, N.
, Bjorn Jensen
, K.
, and Levring
, H.
, “X-Ray Absorption in Matter. Reengineering XCOM
,” Radiat. Phys. Chem.
, Vol. 60
, Nos. 1–2
, 2001
, pp. 23
–24
, https://doi.org/10.1016/S0969-806X(00)00324-823.
Gerward
, L.
, Guilbert
, N.
, Jensen
, K. B.
, and Levring
, H.
, “WinXCom—A Program for Calculating X Ray Attenuation Coefficients
,” Radiat. Phys. Chem.
, Vol. 71
, Nos. 3–4
, 2004
, pp. 653
–654
, https://doi.org/10.1016/j.radphyschem.2004.04.04024.
Tsoulfaniidis
, N.
, Measurement and Detection of Radiation
, McGraw-Hill
, New York
, 1983
, pp. 151
–163
.25.
Bootjomchai
, C.
, Laopaiboon
, J.
, Yenchai
, C.
, and Laopaiboon
, R.
, “Gamma-Ray Shielding and Structural Properties of Barium–Bismuth–Borosilicate Glasses
,” Radiat. Phys. Chem.
, Vol. 81
, No. 7
, 2012
, pp. 785
–790
. https://doi.org/10.1016/j.radphyschem.2012.01.049
This content is only available via PDF.
All rights reserved. This material may not be reproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ASTM International.
You do not currently have access to this content.