Abstract

Polymer materials are used in a wide range of applications. The erosion properties of nylon-12 were analyzed in this study. Randomly-shaped sand (SiO2) particles of various sizes (300–355 μm, 355–500 μm, and 500–600 μm) were selected as erosive elements. Impingement angles between 15 and 90°, impingement velocities between 30 and 50 m/s, and stand-off distances15–25 mm at ambient temperature were tested. During testing, the maximum erosion of the tested polymer composite occurred at 30° angle of impingement, indicating a ductile nature of the test material. Erosion increased with impact velocity and decreased with stand-off distance. The erosion rate varies from approximately 5 to 1600 mg/kg at different combinations of impact velocity, impact angle, and other related parameters. The mean S/N ratio was found to be −41.35 dB, which reflects the average erosion rate under different test conditions. Test results were evaluated using Taguchi's concept to minimize the observations needed, and analysis of variance (ANOVA) was used to identify interactions between tested parameters and identify the most significant parameters. Surface damage was examined using scanning electronic microscopy (SEM) to examine the nature of the wear behavior. The morphology of tested material showed micro cutting, micro cracking, ploughing, and deformation as dominating damage characteristics of impacting surfaces.

References

1.
Arjula
,
S.
,
Harsha
,
A. P.
, and
Ghosh
,
M. K.
, “
Solid-Particle Erosion Behavior of High Performance Thermoplastic Polymers
,”
J. Mater. Sci.
, Vol.
43
, No.
6
,
2008
, pp.
1757
1768
. https://doi.org/10.1007/s10853-007-2405-0
2.
Thai
,
C. M.
,
Tsuda
,
K.
, and
Hojo
,
H.
, “
Erosion Behaviour of Polystyrene
,”
J. Test. Eval.
, Vol.
9
, No.
6
,
1981
, pp.
359
363
. https://doi.org/10.1520/JTE11239Jhttps://doi.org/10.1520/JTE11239J
3.
Walley
,
S. M.
,
Field
,
J. E.
, and
Yennadhiou
,
P.
, “
Single Solid Particle Impact Erosion Damage on Polypropylene
,”
Wear
, Vol.
100
, Nos.
1–3
,
1984
, pp.
263
280
. https://doi.org/10.1016/0043-1648(84)90016-4
4.
Friedrich
,
K.
, “
Erosive Wear of Polymer Surfaces by Steel Ballblasting
,”
J. Mater. Sci.
, Vol.
21
, No.
9
,
1986
, pp.
3317
3332
. https://doi.org/10.1007/BF00553375
5.
Rajesh
,
J. J.
,
Bijwe
,
J.
,
Tewari
,
U. S.
, and
Venkataraman
,
B.
, “
Erosive Wear of Various Polyamides
,”
Wear
, Vol.
249
, No.
8
,
2001
, pp.
702
714
. https://doi.org/10.1016/S0043-1648(01)00695-0
6.
Walley
,
S. M.
and
Field
,
J. E.
, “
The Erosion and Deformation of Polyethylene by Solid- Particle Impact
,”
Philos. Trans. R. Soc. Lond A
, Vol.
321
, No.
1558
,
1987
, pp.
277
303
. https://doi.org/10.1098/rsta.1987.0016
7.
Wang
,
Y. Q.
,
Huang
,
L. P.
,
Liu
,
W. L.
, and
Li
,
J.
, “
The Blast Erosion Behavior of Ultrahigh Molecular Weight Polyethylene
,”
Wear
, Vol.
218
, No.
1
,
1998
, pp.
128
133
. https://doi.org/10.1016/S0043-1648(97)00289-5
8.
Walley
,
S. M.
,
Field
,
J. E.
, and
Greengrass
,
M.
, “
An Impact and Erosion Study of Polyetheretherketone
,”
Wear
, Vol.
114
, No.
1
,
1987
, pp.
59
71
. https://doi.org/10.1016/0043-1648(87)90016-0
9.
Rao
,
P.
and
Buckley
,
D. H.
, “
Angular Particle Impingement Studies of Thermoplastic Materials at Normal Incidence
,”
ASLE Trans
, Vol.
29
, No.
3
,
1986
, pp.
283
298
. https://doi.org/10.1080/05698198608981688
10.
Tilly
,
G. P.
and
Sage
,
W.
, “
The Interaction of Particle and Material Behaviour in Erosion Process
,”
Wear
, Vol.
16
, No.
6
,
1970
, pp.
447
465
. https://doi.org/10.1016/0043-1648(70)90171-7
11.
Brandstädter
,
K. C.
,
Goretta
,
J. L.
,
Routbort
,
D.
,
Groppi
,
P.
, and
Karasek
,
K. R.
, “
Solid Particle Erosion of Bismileimide Polymers
,”
Wear
, Vol.
147
, No.
1
,
1991
, pp.
155
164
. https://doi.org/10.1016/0043-1648(91)90126-F
12.
Miyazaki
,
N.
and
Takeda
,
N.
, “
Solid Particle Erosion of Fiber Reinforced Plastics
,”
J. Compos. Mater.
, Vol.
27
, No.
1
,
1993
, pp.
21
31
. https://doi.org/10.1177/002199839302700102
13.
Miyazaki
,
N.
and
Hamao
,
T.
, “
Solid Particle Erosion of Thermoplastic Resins Reinforced by Short Fibers
,”
J. Compos. Mater.
, Vol.
28
, No.
9
,
1994
, pp.
871
883
. https://doi.org/10.1177/002199839402800905
14.
Thakre
,
A. A.
, “
Prediction of Erosion of Polyetherimide and its Composites Using Response Surface Methodology
,”
J. Tribol
., Vol.
137
, No.
1
,
2015
, 011603. https://doi.org/10.1115/1.4028267
15.
Sutar
,
H.
,
Mishra
,
S. C.
,
Sahoo
,
S. K.
,
Satapathy
,
A.
, and
Kumar
,
V.
, “
Morphology and Solid Particle Erosion Wear Behavior of Red Mud Composite Coatings
,”
Nat. Sci.
, Vol.
4
, No.
11
,
2012
, pp.
832
838
. https://doi.org/10.4236/ns.2012.411111
16.
Avcu
,
E.
,
Fidan
,
S.
,
Bora
,
M. O.
,
Coban
,
O.
,
Taskiran
,
I.
, and
Elik
,
T. S.
, “
Solid Particle Erosive Wear Behavior o f Glass Mat Reinforced PPS Composites: Influence of Erodent Particle Size, Pressure, Particle Impingement Angle, and Velocity
,”
Adv. Polym. Technol.
, Vol.
32
, No.
1
,
2012
, pp.
E386
E398
. https://doi.org/10.1002/adv.21286
17.
Fang
,
L.
,
Sun
,
K.
, and
Cen
,
Q.
, “
Particle Movement Patterns and Their Prediction in Abrasive Flow Machining
,”
Tribotest
, Vol.
13
, No.
4
,
2007
, pp.
195
206
. https://doi.org/10.1002/tt.44
18.
Srivastava
,
V. K.
and
Pawar
,
A. G.
, “
Solid Particle Erosion of Glass Fibre Reinforced Flyash Filled Epoxy Resin Composites
,”
Compos. Sci. Technol.
Vol.
66
, No.
15
,
2006
, pp.
3021
3028
. https://doi.org/10.1016/j.compscitech.2006.02.004
19.
Mohanta
,
N.
and
Acharya
,
S. K.
, “
Effect of Red Mud on Solid Particle Impact Behavior of Polymer Composite
,”
Adv. Polym. Sci. Technol.
, Vol.
5
, No.
2
,
2014
, pp.
18
25
.
20.
Kumar
,
S.
,
Satapathy
,
B. K.
, and
Patnaik
,
A.
, “
Thermo-Mechanical Correlations to Erosion Performance of Short Carbon Fibre Reinforced Vinyl Ester Resin Composites
,”
Mater. Des.
, Vol.
32
, No.
4
,
2011
, pp.
2260
2268
. https://doi.org/10.1016/j.matdes.2010.11.019
21.
Arjula
,
S.
,
Harsha
,
A. P.
, and
Ghosh
,
M. K.
, “
Solid Particle Erosion Studies on Polyphenylene Sulfide Composites and Prediction on Erosion Data Using Artificial Neural Networks
,”
Wear
, Vol.
266
, Nos.
1–2
,
2009
, pp.
184
193
. https://doi.org/10.1016/j.wear.2008.06.008
22.
Harsha
,
A. P.
,
Tewari
,
U. S.
, and
Venkatraman
,
B.
, “
Solid Particle Erosion Behaviour of Various Polyaryletherketone Composites
,”
Wear
, Vol.
254
, Nos.
7–8
,
2003
, pp.
693
712
. https://doi.org/10.1016/S0043-1648(03)00143-1
23.
Harsha
,
A. P.
and
Thakre
,
A. A.
, “
Investigation on Solid Particle Erosion Behavior of Polyetherimide and its Composites
,”
Wear
, Vol.
262
, Nos.
7–8
,
2007
, pp.
807
818
. https://doi.org/10.1016/j.wear.2006.08.012
24.
Pool
,
K. V.
,
Dharan
,
C. K. H.
, and
Finnie
,
I.
, “
Erosive Wear of Composite Materials
,”
Wear
, Vol.
107
, No.
1
,
1986
, pp.
1
12
. https://doi.org/10.1016/0043-1648(86)90043-8
25.
Roy
,
M.
,
Vishwanathan
,
B.
, and
Sundararajan
,
G.
, “
The Solid Particle Erosion of Polymer Matrix Composites
,”
Wear
, Vol.
171
, Nos.
1–2
,
1994
, pp.
149
161
. https://doi.org/10.1016/0043-1648(94)90358-1
26.
Häger
,
A.
,
Friedrich
,
K.
,
Dzenis
,
Y. A.
, and
Paipetis
,
S. A.
, “
Study of Erosion Wear of Advanced Polymer Composites
,” presented at
ICCM-10
, Philadelphia, PA, August 5–8,
1995
,
Street
K.
and
Whistler
B. C.
, Eds.,
Canada Woodhead Publishing Ltd.
,
Cambridge, UK
, pp.
155
162
.
27.
Zahavi
,
J.
and
Schmitt
,
G. F.
, Jr.
, “
Solid Particle Erosion of Reinforced Composite Materials
,”
Wear
, Vol.
71
, No.
2
,
1981
, pp.
179
190
. https://doi.org/10.1016/0043-1648(81)90337-9
28.
Bitter
,
J. G. A.
, “
A Study of Erosion Phenomena—Part I
,”
Wear
, Vol.
6
, No.
1
,
1963
, pp.
5
21
. https://doi.org/10.1016/0043-1648(63)90003-6
29.
Bitter
,
J. G. A.
, “
A Study of Erosion Phenomena—Part II
,”
Wear
, Vol.
6
, No.
3
,
1963
, pp.
169
190
. https://doi.org/10.1016/0043-1648(63)90073-5
30.
Mondal
,
D. P.
,
Das
,
S.
,
Jha
,
A. K.
, and
Yegneswaran
,
A. H.
, “
Abrasive Wear of Al Alloy–Al2O3 Particle Composite: A Study on the Combined Effect of Load and Size of Abrasive
,”
Wear
, Vol.
223
, Nos.
1–2
,
1998
, pp.
131
138
. https://doi.org/10.1016/S0043-1648(98)00278-6
31.
Sundararajan
,
G.
and
Roy
,
M.
, “
Solid Particle Erosion Behaviour of Metallic Materials at Room and Elevated Temperatures
,”
Tribol. Int
., Vol.
30
, No.
5
,
1997
, pp.
339
359
. https://doi.org/10.1016/S0301-679X(96)00064-3
32.
Dundar
,
M.
and
Inal
,
O. T.
, “
Solid Particle Erosion of α-Brass With 5 and 25 μm Particles at Normal Incidence
,”
Wear
, Vol.
224
, No.
2
,
1999
, pp.
226
235
. https://doi.org/10.1016/S0043-1648(98)00346-9
33.
Lynn
,
R. S.
,
Wong
,
K. K.
, and
Clark
,
H. M.
, “
On the Particle Size Effect in Slurry Erosion
,”
Wear
, Vol.
149
, Nos.
1–2
,
1991
, pp.
55
71
. https://doi.org/10.1016/0043-1648(91)90364-Z
34.
Clark
,
H. M.
and
Hartwich
,
R. B.
, “
A Re-Examination of the ‘Particle Size Effect’ in Slurry Erosion
,”
Wear
, Vol.
248
, Nos.
1–2
,
2000
, pp.
147
161
. https://doi.org/10.1016/S0043-1648(00)00556-1
35.
Finnie
,
I.
, “
Erosion of Surfaces by Solid Particles
,”
Wear
, Vol.
3
, No.
2
,
1960
, pp.
87
103
. https://doi.org/10.1016/0043-1648(60)90055-7
36.
Jun
,
Y.-D.
and
Tabakoff
,
W.
, “
Numerical Simulation of a Dilute Particle Flow Over Tube Banks
,”
J. Fluids Eng
., Vol.
116
, No.
4
,
1994
, pp.
770
777
. https://doi.org/10.1115/1.2911848
37.
Bitter
,
J. G. A.
, “
A Study of Erosion Phenomena
,”
Wear
, Vol.
6
, No.
1
,
1963
, pp.
69
90
. https://doi.org/10.1016/0043-1648(63)90003-6
38.
Grant
,
G.
and
Tabakoff
,
W.
, “
An Experimental Investigation of the Erosion Characteristics of 2024 Aluminum Alloy
,” Department of Aerospace Engineering Technical Report No. 73-37,
DOAE
, Ann Arbor, MI,
1973
.
39.
McLaury
,
B.
,
Shirazi
,
S. A.
,
Shadley
,
J. R.
, and
Rybicki
,
E. F.
, “
Modeling Erosion in Chokes
,” presented at the
Fluids Engineering Division Conference
,
San Diego, CA
, July 7–11,
ASME
,
New York
,
1996
, pp.
773
781
.
40.
Menguturk
,
M.
and
Sverdrup
,
E. F.
, “
Calculated Tolerance of a Large Electric Utility Gas Turbine to Erosion Damage by Coal Gas Ash Particles
,”
Erosion: Prevention and Useful Applications, ASTM STP 664
,
Adler
W. F.
, Ed.,
ASTM International
,
West Conshohocken, PA
,
1979
, pp.
193
224
.
This content is only available via PDF.
You do not currently have access to this content.