Abstract
Generalized autoregressive conditional heteroscedastic (GARCH) models have been a powerful tool for modeling volatility. In this paper, we propose an efficient and robust method for estimating the parameters of GARCH models. This method involves a sequence of weights and takes a data-driven weighting scheme to maximize the asymptotic efficiency of the estimators. Under regularity conditions, we establish asymptotic distributions of the proposed estimators for a variety of heavy- or light-tailed error distributions. Simulations endorse our theoretical results. Our approach is applied to analyze the S&P 500 Composite index in the U.S. financial market and run some regression diagnostics to validate the fitted model.
Issue Section:
Research Papers
References
1.
Koenker
, R.
and Bassett
, G.
, “Regression Quantiles
,” Econometrica
, Vol. 46
, No. 1
, 1978
, pp. 33
–50
. https://doi.org/10.2307/19136432.
Davis
, R. A.
and Dunsmuir
, W. T. M.
, “Least Absolute Deviation Estimation for Regression With ARMA Errors
,” J. Theor. Prob.
, Vol. 10
, No. 2
, 1997
, pp. 481
–497
. https://doi.org/10.1023/A:10226208186793.
Koenker
, R.
and Zhao
, Q.
, “Conditional Quantile Estimation and Inference for ARCH Models
,” Economet. Theory
, Vol. 12
, No. 5
, 1996
, pp. 793
–813
. https://doi.org/10.1017/S02664666000071674.
Jiang
, J.
, Zhao
, Q.
, and Hui
, Y. V.
, “Robust Modelling of ARCH Models
,” J. Forecast.
, Vol. 20
, No. 2
, 2001
, pp. 111
–133
. https://doi.org/10.1002/1099-131X(200103)20:2<111::AID-FOR786>3.0.CO;2-N5.
Peng
, L.
and Yao
, Q.
, “Least Absolute Deviation Estimation for ARCH and GARCH Models
,” Biometrika
, Vol. 90
, No. 4
, 2003
, pp. 967
–975
. https://doi.org/10.1093/biomet/90.4.9676.
Hui
, Y. V.
and Jiang
, J.
, “Robust Modeling of DTARCH Models
,” Economet. J.
, Vol. 8
, No. 2
, 2005
, pp. 143
–158
. https://doi.org/10.1111/j.1368-423X.2005.00157.x7.
Lee
, S.
and Noh
, J.
, “Quantile Regression Estimator for GARCH Models
,” Scand. J. Stat.
, Vol. 40
, No. 1
, 2012
, pp. 2
–20
.8.
Jiang
, X.
, Jiang
, J.
, and Song
, X.
, “Oracle Model Selection for Nonlinear Models Based on Weighted Composite Quantile Regression
,” Stat. Sinica
, Vol. 22
, 2012
, pp. 1479
–1150
.9.
Engle
, R. F.
, “Autoregressive Conditional Heteroscedasticity With Estimates of the U.K. Inflation
,” Econometrica
, Vol. 50
, No. 4
, 1982
, pp. 987
–1008
. https://doi.org/10.2307/191277310.
Bollerslev
, T.
, “Generalized Autoregressive Conditional Heteroscedasticity
,” J. Economet.
, Vol. 31
, No. 3
, 1986
, pp. 307
–327
. https://doi.org/10.1016/0304-4076(86)90063-111.
Fan
, J.
and Yao
, Q.
, Nonlinear Time Series: Nonparametric and Parametric Methods
, Springer
, New York
, 2003
.12.
Giratis
, L.
, Kokoszka
, P.
, and Leipus
, R.
, “Stationary ARCH Models: Dependence Structure and Central Limit Theorem
,” Economet. Theory
, Vol. 16
, No. 1
, 2000
, pp. 3
–22
.13.
Hall
, P.
and Yao
, Q.
, “Inference in ARCH and GARCH Models With Heavytailed Errors
,” Econometrica
, Vol. 71
, No. 1
, 2003
, pp. 285
–317
. https://doi.org/10.1111/1468-0262.0039614.
Zou
, H.
and Yuan
, M.
, “Composite Quantile Regression and the Oracle Model Selection Theory
,” Ann. Stat.
, Vol. 36
, No. 3
, 2008
, pp. 1108
–1126
. https://doi.org/10.1214/07-AOS50715.
Awartani
, B.
and Corradi
, V.
, “Predicting the Volatility of the S&P-500 Stock Index via GARCH Models: The Role of Asymmetries
,” Int. J. Forecast.
, Vol. 21
, No. 1
, 2005
, pp. 167
–183
. https://doi.org/10.1016/j.ijforecast.2004.08.00316.
Noh
, J.
, Engle
, R. F.
, and Kane
, A.
, “Forecasting Volatility and Option Prices of the S&P 500 Index
,” J. Deriv.
, Vol. 2
, No. 1
, 1994
, pp. 17
–30
. https://doi.org/10.3905/jod.1994.40790117.
Tsay
, R. S.
, Analysis of Financial Time Series
, Wiley
, Hoboken, NJ
, 2005
.18.
Jiang
, J.
, Jiang
, X.
, and Song
, X.
, “Weighted Composite Quantile Regression of DTARCH Models
,” Econometrics J.
, Vol. 17
, No. 1
, 2014
, pp. 1
–23
https://doi.org/10.1111/ectj.12023.19.
Ruppert
, D.
and Carroll
, R. J.
, “Trimmed Least Squares Estimation in the Linear Model
,” J. Am. Stat. Assoc.
, Vol. 75
, No. 372
, 1980
, pp. 828
–838
. https://doi.org/10.1080/01621459.1980.1047756020.
Knight
, K.
, “Limiting Distributions for l1 Regression Estimators Under General Conditions
,” Ann Stat.
, Vol. 26
, No. 2
, 1998
, pp. 755
–770
. https://doi.org/10.1214/aos/102814485821.
Bickel
, P. J.
, “One-Step Huber Estimates in Linear Models
,” J. Am. Stat. Assoc.
, Vol. 70
, No. 350
, 1975
, pp. 428
–433
. https://doi.org/10.1080/01621459.1975.10479884
This content is only available via PDF.
All rights reserved. This material may not be reproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ASTM International.
You do not currently have access to this content.