Abstract

Generalized autoregressive conditional heteroscedastic (GARCH) models have been a powerful tool for modeling volatility. In this paper, we propose an efficient and robust method for estimating the parameters of GARCH models. This method involves a sequence of weights and takes a data-driven weighting scheme to maximize the asymptotic efficiency of the estimators. Under regularity conditions, we establish asymptotic distributions of the proposed estimators for a variety of heavy- or light-tailed error distributions. Simulations endorse our theoretical results. Our approach is applied to analyze the S&P 500 Composite index in the U.S. financial market and run some regression diagnostics to validate the fitted model.

References

1.
Koenker
,
R.
and
Bassett
,
G.
, “
Regression Quantiles
,”
Econometrica
, Vol.
46
, No.
1
,
1978
, pp.
33
50
. https://doi.org/10.2307/1913643
2.
Davis
,
R. A.
and
Dunsmuir
,
W. T. M.
, “
Least Absolute Deviation Estimation for Regression With ARMA Errors
,”
J. Theor. Prob.
, Vol.
10
, No.
2
,
1997
, pp.
481
497
. https://doi.org/10.1023/A:1022620818679
3.
Koenker
,
R.
and
Zhao
,
Q.
, “
Conditional Quantile Estimation and Inference for ARCH Models
,”
Economet. Theory
, Vol.
12
, No.
5
,
1996
, pp.
793
813
. https://doi.org/10.1017/S0266466600007167
4.
Jiang
,
J.
,
Zhao
,
Q.
, and
Hui
,
Y. V.
, “
Robust Modelling of ARCH Models
,”
J. Forecast.
, Vol.
20
, No.
2
,
2001
, pp.
111
133
. https://doi.org/10.1002/1099-131X(200103)20:2<111::AID-FOR786>3.0.CO;2-N
5.
Peng
,
L.
and
Yao
,
Q.
, “
Least Absolute Deviation Estimation for ARCH and GARCH Models
,”
Biometrika
, Vol.
90
, No.
4
,
2003
, pp.
967
975
. https://doi.org/10.1093/biomet/90.4.967
6.
Hui
,
Y. V.
and
Jiang
,
J.
, “
Robust Modeling of DTARCH Models
,”
Economet. J.
, Vol.
8
, No.
2
,
2005
, pp.
143
158
. https://doi.org/10.1111/j.1368-423X.2005.00157.x
7.
Lee
,
S.
and
Noh
,
J.
, “
Quantile Regression Estimator for GARCH Models
,”
Scand. J. Stat.
, Vol.
40
, No.
1
,
2012
, pp.
2
20
.
8.
Jiang
,
X.
,
Jiang
,
J.
, and
Song
,
X.
, “
Oracle Model Selection for Nonlinear Models Based on Weighted Composite Quantile Regression
,”
Stat. Sinica
, Vol.
22
,
2012
, pp.
1479
1150
.
9.
Engle
,
R. F.
, “
Autoregressive Conditional Heteroscedasticity With Estimates of the U.K. Inflation
,”
Econometrica
, Vol.
50
, No.
4
,
1982
, pp.
987
1008
. https://doi.org/10.2307/1912773
10.
Bollerslev
,
T.
, “
Generalized Autoregressive Conditional Heteroscedasticity
,”
J. Economet.
, Vol.
31
, No.
3
,
1986
, pp.
307
327
. https://doi.org/10.1016/0304-4076(86)90063-1
11.
Fan
,
J.
and
Yao
,
Q.
,
Nonlinear Time Series: Nonparametric and Parametric Methods
,
Springer
,
New York
,
2003
.
12.
Giratis
,
L.
,
Kokoszka
,
P.
, and
Leipus
,
R.
, “
Stationary ARCH Models: Dependence Structure and Central Limit Theorem
,”
Economet. Theory
, Vol.
16
, No.
1
,
2000
, pp.
3
22
.
13.
Hall
,
P.
and
Yao
,
Q.
, “
Inference in ARCH and GARCH Models With Heavytailed Errors
,”
Econometrica
, Vol.
71
, No.
1
,
2003
, pp.
285
317
. https://doi.org/10.1111/1468-0262.00396
14.
Zou
,
H.
and
Yuan
,
M.
, “
Composite Quantile Regression and the Oracle Model Selection Theory
,”
Ann. Stat.
, Vol.
36
, No.
3
,
2008
, pp.
1108
1126
. https://doi.org/10.1214/07-AOS507
15.
Awartani
,
B.
and
Corradi
,
V.
, “
Predicting the Volatility of the S&P-500 Stock Index via GARCH Models: The Role of Asymmetries
,”
Int. J. Forecast.
, Vol.
21
, No.
1
,
2005
, pp.
167
183
. https://doi.org/10.1016/j.ijforecast.2004.08.003
16.
Noh
,
J.
,
Engle
,
R. F.
, and
Kane
,
A.
, “
Forecasting Volatility and Option Prices of the S&P 500 Index
,”
J. Deriv.
, Vol.
2
, No.
1
,
1994
, pp.
17
30
. https://doi.org/10.3905/jod.1994.407901
17.
Tsay
,
R. S.
,
Analysis of Financial Time Series
,
Wiley
,
Hoboken, NJ
,
2005
.
18.
Jiang
,
J.
,
Jiang
,
X.
, and
Song
,
X.
, “
Weighted Composite Quantile Regression of DTARCH Models
,”
Econometrics J.
, Vol.
17
, No.
1
,
2014
, pp.
1
23
https://doi.org/10.1111/ectj.12023.
19.
Ruppert
,
D.
and
Carroll
,
R. J.
, “
Trimmed Least Squares Estimation in the Linear Model
,”
J. Am. Stat. Assoc.
, Vol.
75
, No.
372
,
1980
, pp.
828
838
. https://doi.org/10.1080/01621459.1980.10477560
20.
Knight
,
K.
, “
Limiting Distributions for l1 Regression Estimators Under General Conditions
,”
Ann Stat.
, Vol.
26
, No.
2
,
1998
, pp.
755
770
. https://doi.org/10.1214/aos/1028144858
21.
Bickel
,
P. J.
, “
One-Step Huber Estimates in Linear Models
,”
J. Am. Stat. Assoc.
, Vol.
70
, No.
350
,
1975
, pp.
428
433
. https://doi.org/10.1080/01621459.1975.10479884
This content is only available via PDF.
You do not currently have access to this content.