Abstract
In the present work, fracture-toughness parameters of Zr-2.5Nb alloy were evaluated as per ASTM E1820 and ISO 12135 standards at 25°C and 300°C. To investigate the influence of the material's microstructure on deviation in fracture-toughness values, Zr-2.5Nb alloy plates were individually water quenched from three soaking temperatures; 850°C, 870°C, and 890°C with 15- and 30-min soaking durations. Under these six conditions, fracture resistance, J-R curves derived from these standards exhibited marginal deviations. However, slope of valid J-R curve region (dJ/da) obtained by two methods had appreciable differences, especially at 300°C.
Issue Section:
Research Papers
References
1.
ASTM E1820-11ε1:
Standard Test Method for Measurement of Fracture Toughness
, ASTM International
, West Conshohocken, PA
, 2011
, www.astm.org.2.
ISO 12135:2002(E),
2002
, “Metallic Materials—Unified Method of Test for the Determination of Quasistatic Fracture Toughness
,” International Organization for Standardization
, London
.3.
ISO 12135:2002/Cor1,
2008
, “Metallic Materials—Unified Method of Test for the Determination of Quasistatic Fracture Toughness
,” International Organization for Standardization
, London
.4.
Ernst
, H. A.
, Paris
, P. C.
, and Landes
, J. D.
, “Estimations on J-Integral and Tearing Modulus T from a Single Specimen Test Record
,” Fracture Mechanics: Thirteenth Conference, ASTM STP 743
, ASTM International
, West Conshohocken, PA
, 1981
, pp. 476
–502
.5.
Wallin
, K.
and Laukkanen
, A.
, “Improved Crack Growth Corrections for J-R Curve Testing
,” Eng. Fract. Mech.
, Vol. 71
, No. 11
, 2004
, pp. 1601
–1614
. https://doi.org/10.1016/S0013-7944(03)00165-66.
Irwin
, G. R.
, “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,” J. Appl. Mech.
, Vol. 24
, 1957
, pp. 361
–364
.7.
Gordon
, J. R.
, “An Assessment of the Accuracy of the Unloading Compliance Method for Measuring Crack Growth Resistance Curves
,” WI Report 325/1986, The Welding Institute
, Cambridge, UK, 1986
.8.
Steenkamp
, P. A. J. M.
, “J-R Curve Testing of Three Point Bend Specimens by the Unloading Compliance Method
,” Presented at 18th National Symposium of Fracture Mechanics
, Boulder, CO, June 25–27, 1985
.9.
Futato
, R. J.
, Aadland
, J. D.
, Van Der Slys
, W. A.
, and Lowe
, A. L.
, “A Sensitivity Study of the Unloading Compliance Single Specimen J-Test Technique
,” ASTM STP 856
, ASTM International
, West Conshohocken, PA
, 1985
, pp. 84
–103
.10.
Neale
, B. K.
, Curry
, D. A.
, Green
, G.
, Haigh
, J. R.
, and Akhurst
, K. N.
, “A Procedure for the Determination of the Fracture Resistance of Ductile Steels
,” Int. J. Pres. Ves. Pip.
, Vol. 20
, No. 3
, 1985
, pp. 155
–179
. https://doi.org/10.1016/0308-0161(85)90037-711.
Schwalbe
, K. H.
, Hayes
, B.
, Baustian
, K.
, Cornec
, A.
, Gordon
, R.
, Homayun
, M.
, and Voss
, B.
, “Validation of the Fracture Mechanics Test Method
,” Fatigue Fract. Eng. Mater. Struct.
, Vol. 16
, No. 11
, 1993
, pp. 1231
–1284
. https://doi.org/10.1111/j.1460-2695.1993.tb00736.x12.
Gordon
, J. R.
, “The Welding Institute Procedure for the Determination of the Fracture of the Fracture Resistance of Fully Ductile Steel
,” WI Report 275/1985, TWI
, Cambridge, UK, 1985
.13.
Voss
, B.
, “On the Problem of Negative Crack Growth and Load Relaxation in Single Specimen Partial Unloading Compliance Tests
,” CSNI Workshop on Ductile Fracture Test Methods
, Paris
, 1983
, pp. 210
–219
.14.
Johnson
, H. H.
, “Calibrating the Electric Potential Method for the Studying Slow Crack Growth
,” Mater. Res. Standards
, Vol. 5
, 1965
, pp. 442
–445
.15.
Schwalbe
, K. H.
, and Hellmann
, D.
, “Application of the Electrical Potential Method to Crack Length Measurements Using Johnson's Formula
,” J. Test. Eval.
, Vol. 9
, No. 3
, 1981
, pp. 218
–221
. https://doi.org/10.1520/JTE11560J16.
Singh
, R. N.
, Bind
, A. K.
, Srinivasan
, N. S.
, and Ståhle
, P.
, “Influence of Hydrogen Content on Fracture Toughness of CWSR Zr-2.5Nb Pressure Tube Alloy
,” J. Nucl. Mater.
, Vol. 432
, Nos. 1–3
, 2013
, pp. 87
–93
. https://doi.org/10.1016/j.jnucmat.2012.07.04617.
Roode
, P.
and Marandet
, B.
, “Application of the AC Potential Method to the Detection of Initiation in Static and Dynamic Testing in: Ductile Fracture Test Methods
,” Proceedings of CSNI Workshop
, OECD, Paris, Dec 1–3, 1982
.18.
Bind
, A. K.
, Singh
, R. N.
, Sunil
, S.
, and Khandelwal
, H. K.
, “Comparison of J-Parameters of Cold Worked and Stress Relieved Zr-2.5Nb Pressure Tube Alloy Determined Using Load Normalization and Direct Current Potential Drop Technique
,” Eng. Fract. Mech.
, Vol. 105
, 2013
, pp. 200
–210
. https://doi.org/10.1016/j.engfracmech.2013.04.00319.
Schwalbe
, K. -H.
, Hellmann
, D.
, Heerens
, J.
, Knaack
, J.
, and Müller-Roos
, J.
, “Measurement of Stable Crack Growth Including Detection of Initiation of Growth Using the DC Potential Drop and the Partial Unloading Methods. Elastic-Plastic Fracture Test Methods: The User's Experience
,” ASTM STP 856
, Wessel
E. T.
and Loss
F. J.
, Eds., American Society for Testing and Materials
, Philadelphia, PA
, 1985
, pp. 338
–362
.20.
“Delayed Hydride Cracking in Zirconium Alloys in Pressure Tube Nuclear Reactors
,” IAEA-TECDOC-1410
, IAEA
, Vienna
, 2004
.21.
Wilkowski
, G. M.
, “Elastic Plastic Fracture Studies Using the DC-EP Method, Ductile Fracture Tests Methods
, Proceedings of CSNI Workshop
, OECD
, Paris, Dec 1–3, 1982
.22.
Dietzel
, W.
and Schwalbe
, K. H.
, “Monitoring Stable Crack Growth Using a Combined a.c./d.c. Potential Drop Technique
,” Matieralprüfung
, Vol. 28
, No. 11
, 1986
, pp. 368
–372
.23.
Okomura
, K.
, Venkatasubramanian
, T. V.
, Unvala
, B. A.
, and Backer
, T. J.
, “Application of the AC Potential Drop Technique to the Determination of R-Curve of Tough Ferritic Steels
,” Eng. Fract. Mech.
, Vol. 14
, No. 3
, 1981
, pp. 617
–625
. https://doi.org/10.1016/0013-7944(81)90048-524.
Prantl
, G.
, “Assessment of Crack Extension by Different Methods
,” Proceedings of CSNI Workshop
, OECD, Paris, Dec 1–3, 1982
.25.
Dover
, W. D.
and Collings
, R.
, “Recent Advances in the Detection and Sizing of Cracks Using Alternating Current Field Measurement (A.C.F.M.)
,” Brit. J. Non-Destruct. Test.
, Vol. 22
, 1980
, pp. 291
–295
.26.
Sumpter
, J. D. G.
, “J-C Determination for Shallow Notch Welded Bend Specimens
,” Fatigue Fract. Eng. Mater. Struct.
, Vol. 10
, No. 6
, 1987
, pp. 479
–493
. https://doi.org/10.1111/j.1460-2695.1987.tb00498.x27.
Nevalainen
, M.
and Dodds
, R. H.
, “Numerical Investigation of 3-D Constraint Effect on Brittle Fracture in SE(B) and CT Specimens
,” Int. J. Fract.
, Vol. 74
, 1995
, pp. 131
–161
.28.
Underwood
, J. H.
, Kapp
, J. A.
, and Baratta
, F. I.
, “More on Appliance of the Three-Point Bend Specimens
,” Int. J. Fract.
, Vol. 28
, No. 2
, 1985
, pp. R41
–R44
. https://doi.org/10.1007/BF0001859029.
Saxena
, A.
and Hudak
, S. J.
, “Review and Extension of Compliance Information for Common Crack Growth Specimens
,” Int. J. Fract.
, Vol. 14
, No. 5
, 1978
, pp. 453
–468
. https://doi.org/10.1007/BF0139046830.
Coleman
, C. E.
, Cheadle
, B. A.
, Cann
, C. D.
, and Theaker
, J. R.
, “Development of Pressure Tubes With Service Life Greater than 30 Years
,” Zirconium in Nuclear Industry: 11th International Symposium, ASTM STP 1295
, Bradley
E. R.
and Sabol
G. P.
, Eds., American Society for Testing and Materials
, 1996
, pp. 884
–898
. 31.
Singh
, R. N.
, Bind
, A. K.
, Singh
, J. B.
, Chakravartty
, J. K.
, Thomas Paul
, V.
, Madhusoodnan
, K.
, Satyam Suwas
, Saroja
, S.
, Suri
, A. K.
, and Banerjee
, S.
, “Development and Characterization of Microstructure and Mechanical Properties of Heat-Treated Zr–2.5Nb Alloy for AHWR Pressure Tubes
,” Mater. Perform. Charact.
, Vol. 2
, No. 1
, 2013
, pp. 120
–133
.32.
Fleck
, R. G.
, Price
, E. G.
, and Cheadle
, B. A.
, “Pressure Tube Development for CANDU Reactors
,” Zirconium in Nuclear Industry, ASTM STP 824
, ASTM International
, West Conshohocken, PA
, 1984
, p. 88.33.
Khandelwal
, H. K.
, Singh
, R. N.
, Bind
, A. K.
, Sunil
, S.
, Rath
, B. N.
, Singh
, J. B.
, Kumar
, S.
, and Chakravartty
, J. K.
, “Influence of Soaking Temperature and Time on Microstructure and Mechanical Properties of Water Quenched Zr-2.5Nb Alloy
,” Mater. Perform. Charact.
, Vol. 3
, No. 1
, 2014
, pp. 216
–238
. https://doi.org/10.1520/MPC2013005134.
Khandelwal
, H. K.
, Singh
, R. N.
, Bind
, A. K.
, Sunil
, S.
, and Chakravartty
, J. K.
, “Comparative Study of Basic Test and Resistance Curve Methods for Fracture Toughness Evaluation of Heat Treated Zr-2.5Nb Alloy
,” Mater. Perform. Charact.
, Vol. 3
, No. 3
, 2014
, pp. 21
–44
. https://doi.org/10.1520/MPC2013006535.
Theaker
, J. R.
, Choubey
, R.
, Moan
, G. D.
, Aldridge
, S. A.
, Davis
, L.
, Graham
, R. A.
, and Coleman
, C. E.
, “Fabrication of Zr-2.5Nb Pressure Tubes to Minimize the Harmful Effects of Trace Elements
,” Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP 1295
, ASTM International
, West Conshohocken, PA
, 1996
, p. 221.
This content is only available via PDF.
All rights reserved. This material may not be reproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ASTM International.
You do not currently have access to this content.