Abstract

Occasionally, in laboratory conditions, it can be advantageous to use small-scale specimens, e.g., when the amount of available material is limited or expensive or when there are space limitations. The characteristics of any tested material such as concrete or mortar are affected by the specimens’ size; therefore it is important to consider this effect when estimating the properties of these materials. Despite the extensive studies about the effect of the specimens’ size in concrete, there is a shortage of information about this matter in mortars. This study presented the effects of specimens’ size on the mechanical properties of cement-based lightweight mortars. These included the compressive strength and flexural strength, bulk density, dynamic Young’s modulus, and ultrasonic pulse velocity. For this purpose, statistical analyses were conducted in order to correlate test values from standard samples and small-scale samples and to analyze the feasibility of estimating the mechanical strength from non-destructive tests on small-scale samples. In order to facilitate the production of small-scale specimens, an alternative mixing method was also tested. The results obtained show correlation factors around 0.9, which was found suitable to estimate the mechanical characteristics by using small-scale samples instead of standard specimens. The correlations obtained from the relationships between the results of mechanical strength and non-destructive tests were also evaluated.

References

1.
Patterson
,
R.
and
Pavía
,
S.
, “
Influence of Loading Rate and Specimen Size on Lime Mortar Strength
,” presented at the
Bridge and Concrete Research in Ireland (BCRI) Conference
, Dublin Institute of Technology and Trinity College Dublin, Dublin, Ireland, September 5–7,
2012
,
Trinity College
,
Dublin, Ireland
, -unpublished.
2.
Ba
,
M.
,
Qian
,
C.
, and
Wang
,
H.
, “
Effects of Specimen Shape and Size on Water Loss and Drying Shrinkage of Cement-Based Materials
,”
J. Wuhan Univ. Technol. Mater.
, Vol.
28
, No.
4
,
2013
, pp.
733
740
. https://doi.org/10.1007/s11595-013-0761-y
3.
Parsekian
,
G. A.
,
Fonseca
,
F. S.
,
Pinheiro
,
G. L.
, and
Camacho
,
J. S.
, “
Properties of Mortar Using Cubes, Prism Halves, and Cylinder Specimens
,”
ACI Mater. J.
, Vol.
111
, No.
4
,
2014
, pp.
443
454
. https://doi.org/10.14359/51686726
4.
Indelicato
,
F.
, “
Estimate of Concrete Cube Strength by Means of Different Diameter Cores: A Statistical Approach
,”
Mater. Struct.
, Vol.
33
, No.
3
,
1997
, pp.
131
138
. https://doi.org/10.1007/BF02486384
5.
Nikbin
,
I.
,
Eslami
,
M.
, and
Rezvani
,
S.
, “
An Experimental Comparative Survey on the Interpretation of Concrete Core Strength Results
,”
Eur. J. Sci. Res.
, Vol.
37
, No.
3
,
2009
, pp.
445
456
.
6.
Paksoy
,
N. G.
,
2006
, “
Evaluation of Cement Mortars by Ultrasound
,” M.S. thesis,
Middle East Technical Univ.
, Ankara, Turkey.
7.
Neville
,
J. H.
, “
The Influence of Size of Concrete Test Cubes on Mean Strength and Standard Deviation
,”
Mag. Concr. Res.
, Vol.
8
, No.
23
,
1956
, pp.
101
110
. https://doi.org/10.1680/macr.1956.8.23.101
8.
Bungey
,
J.
and
Millard
,
S.
,
Testing of Concrete in Structures
, 3rd ed.,
Chapman & Hall
,
London
,
1996
.
9.
Bartlett
,
F. M.
and
MacGregor
,
J. G.
, “
Effect of Core Diameter on Concrete Core Strengths
,”
ACI Mater. J.
, Vol.
91
, No.
5
,
1994
, pp.
460
470
. https://doi.org/10.14359/4160
10.
Tuncan
,
M.
,
Arioz
,
O.
,
Ramyar
,
K.
, and
Karasu
,
B.
, “
Assessing Concrete Strength by Means of Small Diameter Cores
,”
Constr. Build. Mater.
, Vol.
22
, No.
5
,
2008
, pp.
981
988
. https://doi.org/10.1016/j.conbuildmat.2006.11.020
11.
Gonnerman
,
H.
, “
Effect of Size and Shape of Test Specimen on Compressive Strength of Concrete
,”
ASTM Proceedings 25, Part II
,
ASTM International
,
West Conshohocken, PA
,
1925
, pp.
237
250
.
12.
Soares
,
A.
,
Flores-Colen
,
I.
, and
de Brito
,
J.
, “
Influence of Slenderness on the Compressive Strength Evaluation of Cores of Renders
,”
Mater. Struct.
, Vol.
48
, No.
5
,
2014
, pp.
1449
1460
. https://doi.org/10.1617/s11527-013-0245-8
13.
Chung
,
H.
, “
Effect of Length/Diameter Ratio on Compressive Strength of Drilled Concrete Core—A Semi-Rational Approach
,”
Cem. Concr. Aggr.
, Vol.
1
, No.
2
,
1979
, pp.
68
70
. https://doi.org/10.1520/CCA10406J
14.
Di Maio
,
A.
,
Giaccio
,
G.
, and
Zerbino
,
R.
, “
Failure Mechanism of Concrete, Combined Effects of Coarse Aggregates and Specimen Geometry
,”
Constr. Build. Mater.
, Vol.
10
, No.
8
,
1996
, pp.
571
575
. https://doi.org/10.1016/S0950-0618(96)00025-6
15.
Tokyay
,
M.
and
Özdemir
,
M.
, “
Specimen Shape and Size Effect on the Compressive Strength of Higher Strength Concrete
,”
Cem. Concr. Res.
, Vol.
27
, No.
8
,
1997
, pp.
1281
1289
. https://doi.org/10.1016/S0008-8846(97)00104-X
16.
Kim
,
J.
,
Yi
,
S.
,
Park
,
C.
, and
Eo
,
S.
, “
Size Effect on Compressive Strength of Plain and Spirally Reinforced Concrete Cylinders
,”
ACI Struct. J.
, Vol.
96
, No.
1
,
1998
, pp.
88
96
. https://doi.org/10.14359/599
17.
Wang
,
S.
,
Zhang
,
M.
, and
Queck
,
S.
, “
Effect of Specimen Size on Static Strength and Dynamic Increase Factor of High-Strength Concrete From SHPH Test
,”
J. Test. Eval.
, Vol.
39
, No.
5
,
2011
https://doi.org/10.1520/JTE103370
18.
Drdácký
,
M.
, “
Non-Standard Testing of Mechanical Characteristics of Historic Mortars
,”
Int. J. Archit. Herit.
, Vol.
5
, Nos.
4–5
,
2011
, pp.
383
394
. https://doi.org/10.1080/15583051003717788
19.
Viso
,
J.
,
Carmona
,
J.
, and
Ruiz
,
G.
, “
Shape and Size Effects on the Compressive Strength of High-Strength Concrete
,”
Cem. Concr. Res.
, Vol.
38
, No.
3
,
2008
, pp.
386
395
. https://doi.org/10.1016/j.cemconres.2007.09.020
20.
Yi
,
S. T.
,
Yang
,
E. I.
, and
Choi
,
J. C.
, “
Effect of Specimen Sizes, Specimen Shapes, and Placement Directions on Compressive Strength of Concrete
,”
Nucl. Eng. Des.
, Vol.
236
, No.
2
,
2005
, pp.
115
127
. https://doi.org/10.1016/j.nucengdes.2005.08.004
21.
Majeed
,
S.
, “
Effect of Specimen Size on Compressive, Modulus of Rupture and Splitting Strength on Cement Mortars
,”
J. Appl. Sci.
, Vol.
11
, No.
3
,
2011
, pp.
584
588
. https://doi.org/10.3923/jas.2011.584.588
22.
Kadlecek
,
V. L.
,
Modry
,
S.
, and
Kadlecek
,
J. V.
, “
Size Effect of Test Specimens on Tensile Splitting Strength of Concrete: General Relation
,”
Mater. Struct.
, Vol.
35
, No.
1
,
2002
, pp.
28
34
. https://doi.org/10.1007/BF02482087
23.
Zhou
,
J.
,
Qian
,
P.
, and
Chen
,
X.
, “
Stress-Strain Behavior of Cementitious Materials With Different Sizes
,”
Sci. World J.
, Vol.
2014
, No.
2014
, 919154. https://doi.org/10.1155/2014/919154
24.
Ward
,
R. J.
and
Li
,
V. C.
, “
Dependence of Flexural Behavior of Fiber Reinforced Mortar on Material Fracture Resistance and Beam Size
,”
Constr. Build. Mater.
, Vol.
5
, No.
3
,
1991
, pp.
151
161
. https://doi.org/10.1016/0950-0618(91)90066-T
25.
Van Mier
,
J. G. M.
,
Shah
,
S. P.
,
Arnaud
,
M.
,
Balayssac
,
J. P.
,
Bascoul
,
A.
,
Choi
,
S.
,
Dasenbrock
,
D.
,
Ferrara
,
G.
,
French
,
C.
,
Gobbi
,
M. E.
,
Karihaloo
,
B. L.
,
Könij
,
G.
,
Kotsovos
,
M. D.
,
Labuz
,
J.
,
Lange-Kornbak
,
D.
,
Markeset
,
G.
,
Pavlovic
,
M. N.
,
Simsch
,
G.
,
Thiend
,
K. -C.
,
Turatsinze
,
A.
,
Ulmef
,
M.
,
van Gee1
,
H. J. G. M.
,
van Vliet
,
M. R. A.
, and
Zissopoulos
,
D.
, “
Strain-Softening of Concrete in Uniaxial Compression
,”
Mater. Struct.
, Vol.
30
, No.
4
,
1997
, pp.
195
209
. https://doi.org/10.1007/BF02486177
26.
Bilesky
,
P. C.
and
Tango
,
C. E. S.
, “
Use of ‘Mounted Cylinders’ for Mechanical Concrete Tests (II Modulus of Elasticity)
” presented at the
47th Brazilian Concrete Congress
, Olinda, Brazil, September 2–7,
2005
,
Brazilian Concrete Institute (IBRACON)
,
Olinda - PE, Brazil
, -unpublished (in Portuguese).
27.
Andrade
,
M. A. S.
,
Gambale
,
E. A.
, and
Santos
,
S. B.
, “
Prediction Models of the Modulus of Elasticity of Concrete
,” presented at the
47th Brazilian Concrete Congress
, Olinda, Brazil, September 2–7,
2005
,
Brazilian Concrete Institute (IBRACON)
,
Olinda - PE, Brazil
, -unpublished (in Portuguese).
28.
Martins
,
G. D.
,
2008
, “
Influence of the Size of the Specimen on the Results of Modulus of Elasticity and Compressive Strength Tests and Their Correlations for Concrete Produced in Goiânia-Go
,” M.S. thesis,
Federal University of Goiás
, Brazil (in Portuguese).
29.
Cupertino
,
A. L. L.
,
Inácio
,
J. J.
,
Castro
,
A.
,
Silva
,
A. R.
,
Andrade
,
M. A. A.
, and
Oliveira
,
N. M.
, “
Analysis of the Influence of the Basic Size of the Modulus of Elasticity Specimen
,” presented at the
47th Brazilian Concrete Congress
, Olinda, Brazil, September 2–7,
2005
,
Brazilian Concrete Institute (IBRACON)
,
Olinda - PE, Brazil
, -unpublished (in Portuguese).
30.
Stawiski
,
B.
and
Kania
,
T.
, “
Determination of the Influence of Cylindrical Samples Dimensions on the Evaluation of Concrete and Wall Mortar Strength Using Ultrasound Method
,”
Proc. Eng.
, Vol.
57
,
2013
, pp.
1078
1085
. https://doi.org/10.1016/j.proeng.2013.04.136
31.
Zabihi
,
N.
,
2012
, “
Effect of Specimen Size and Shape on Strength of Concrete
,” M.S. thesis,
Eastern Mediterranean University
, Gazimagusa, North Cyprus.
32.
Popovics
,
S.
,
Rose
,
J. L.
, and
Popovics
,
J. S.
, “
The Behavior of Ultrasonic Pulses in Concrete
,”
Cem. Concr. Res.
, Vol.
20
, No.
2
,
1990
, pp.
259
270
. https://doi.org/10.1016/0008-8846(90)90079-D
33.
Río
,
L. M.
,
Jiménez
,
A.
,
López
,
F.
,
Rosa
,
F. J.
,
Rufo
,
M. M.
, and
Paniagua
,
J. M.
, “
Characterization and Hardening of Concrete With Ultrasonic Testing
,”
Ultrasonics
, Vol.
42
, No.
1
,
2004
, pp.
527
530
. https://doi.org/10.1016/j.ultras.2004.01.053
34.
Turgut
,
P.
, “
Research Into the Correlation Between Concrete Strength and UPV Values
,”
Nondestruct.Test.
, Vol.
2
, No.
12
,
2004
, http://www.ndt.net/article/v09n12/turgut/turgut.htm (Last accessed 27 August 2015).
35.
Tharmaratnam
,
K.
and
Tan
,
B. S.
, “
Attenuation of Ultrasonic Pulse in Cement Mortar
,”
Cem. Concr. Res.
, Vol.
20
, No.
3
,
1989
, pp.
335
345
. https://doi.org/10.1016/0008-8846(90)90022-P
36.
Flores-Colen
,
I.
,
de Brito
,
J.
, and
Freitas
,
V. P.
, “
On-Site Performance Assessment of Rendering Façades for Predictive Maintenance
,”
Struct. Surv.
, Vol.
29
, No.
2
,
2011
, pp.
133
146
. https://doi.org/10.1108/02630801111132812
37.
Vale
,
H.
,
Melo
,
H.
,
Soares
,
A.
,
Flores-Colen
,
I.
, and
Gomes
,
M. G.
, “
Performance of Industrial Thermal Insulation Renders
,” presented at the
9th International Masonry Conference
, Guimarães, Portugal, July 7–9,
2014
,
ISISE
,
Coimbra, Portugal
, -unpublished.
38.
EN 1015-2:
Methods of Test for Mortar Masonry—Part 2: Bulk Sampling of Mortars and Preparation of Test Mortars, European Committee for Standardization
,
CEN
,
Brussels, Belgium
,
1998
.
39.
EN 1015-11:
Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar
,
CEN
,
Brussels, Belgium
,
1999
.
40.
ASTM E1876-09:
Standard Test Method for Dynamic Young’s Modulus, Shear Modulus, and Poisson’s Ratio by Impulse Excitation of Vibration
,
ASTM International
,
West Conshohocken, PA
,
2009
, www.astm.org.
41.
EN 12504:
Testing Concrete—Part 4: Determination of Ultrasonic Pulse Velocity 4
,
CEN
,
Brussels, Belgium
,
2004
.
This content is only available via PDF.
You do not currently have access to this content.