Abstract

The main purpose of this study is to determine dynamic characteristics, such as natural frequencies, mode shapes and damping ratios of reinforced concrete (RC) frames with low and normal strength concrete and compare them with each other using the operational modal analyses method under ambient vibration. For this purpose, full-scaled, one bay, and one-story RC frames with low and normal strength concrete are produced. The RC frames are vibrated by natural excitations with small impact effects, and the response signals are recorded using accelerometers during the tests. Measurement time-frequency span and effective mode number are determined by considering similar studies and literature. To obtain experimental dynamic characteristics, enhanced frequency domain decomposition and stochastic subspace identification methods are evaluated together. Results of ambient vibration tests show that dynamic characteristics change significantly depending on the material properties. It is shown that the ambient vibration measurements are enough to identify the most significant modes of RC frames as well. The first five natural frequencies are obtained experimentally for the RC frame with low and normal strength concrete between 14.99–155.20 Hz and 16.64–179.20 Hz, respectively. Dynamic characteristics should be verified using finite element analysis. Finally, inconsistency between experimental and analytical dynamic characteristics should be minimized by finite element model updating using some uncertain parameters such as material properties, boundary condition, and section properties to reflect the current behavior of the RC frames.

References

1.
Govindan
,
P.
,
Lakshmipathy
,
M.
, and
Santhakumar
,
A. R.
, “
Ductility of In-Filled Frames
,”
ACI Struct. J.
, Vol.
83
(
4
),
1986
, pp.
567
576
.
2.
Park
,
R.
, “
Evaluation of Ductility of Structures and Structural Assemblages From Laboratory Testing
,”
Bull. NZ Nat. Soc. Earthq. Eng.
, Vol.
22
(
3
),
1989
, pp.
55
166
.
3.
Garcia
,
R.
,
Hajirasouliha
,
I.
, and
Pilakoutas
,
K.
, “
Seismic Behavior of Different RC Frames Strengthened With CFRP Composites
,”
Eng. Struct.
, Vol.
32
,
2010
, pp.
3075
3085
. https://doi.org/10.1016/j.engstruct.2010.05.026
4.
Sahoo
,
D. R.
and
Rai
,
D. C.
, “
Seismic Strengthening of Non-Ductile Reinforced Concrete Frames Using Aluminum Shear Links as Energy-Dissipation Devices
,”
Eng. Struct.
, Vol.
32
,
2010
, pp.
3548
3557
. https://doi.org/10.1016/j.engstruct.2010.07.023
5.
Özsayın
,
B.
,
Yılmaz
,
E.
,
İspir
,
M.
,
Özkaynak
,
H.
,
Yüksel
,
E.
, and
İlki
,
A.
, “
Characteristics of CFRP Retrofitted Hollow Brick Infill Walls of Reinforced Concrete Frames
,”
Constr. Build. Mater.
, Vol.
25
,
2011
, pp.
4017
4024
. https://doi.org/10.1016/j.conbuildmat.2011.04.036
6.
Morin
,
P. B.
,
Léger
,
P.
, and
Tinawi
,
R.
, “
Seismic Behavior of Post-Tensioned Gravity Dams: Shake Table Experiments and Numerical Simulations
,”
J. Struct. Eng.
, Vol.
128
,
2002
, pp.
140
252
. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:2(140)
7.
Reynolds
,
P.
,
Pavic
,
A.
, and
Prichard
,
S.
, “
Dynamic Analysis and Testing of a High Performance Floor Structure
,”
International Conference on Structural Dynamic Modeling—Test, Analysis, Correlation and Validation
,
Madeira Island, Portugal
, June 3–5,
2002
.
8.
Sasaki
,
T.
,
Kanenawa
,
K.
, and
Yamaguchi
,
Y.
, “
Simple Estimating Method of Damages of Concrete Gravity Dam Based on Linear Dynamic Analysis
,”
13th World Conference on Earthquake Engineering
,
Vancouver, B.C., Canada
, August 1–6,
2004
.
9.
Law
,
S. S.
,
Li
,
X. Y.
, and
Lu
,
Z. R.
, “
Structural Damage Detection From Wavelet Coefficient Sensitivity With Model Errors
,”
J. Eng. Mech.
, Vol.
132
,
2006
, pp.
1077
1087
. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:10(1077)
10.
Ren
,
W. X.
,
Zhao
,
T.
, and
Harik
,
I. E.
, “
Experimental and Analytical Modal Analysis of Steel Arch Bridge
,”
J. Struct. Eng.
, Vol.
130
,
2004
, pp.
1022
1031
. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:7(1022)
11.
Peeters
,
B.
and
De Roeck
,
G.
, “
Reference Based Stochastic Subspace Identification in Civil Engineering
,”
Proceedings of the Second International Conference on Identification in Engineering Systems
,
Swansea, United Kingdom
, March
1999
, pp.
639
648
.
12.
Bayraktar
,
A.
,
Altunışık
,
A. C.
,
Sevim
,
B.
,
Türker
,
T.
,
Akköse
,
M.
, and
Çoşkun
,
N.
, “
Modal Analysis, Experimental Validation, and Calibration of a Historical Masonry Minaret
,”
J. Test. Eval.
, Vol.
36
(
6
),
2006
, pp.
516
524
.
13.
Brencich
,
A.
and
Sabia
,
D.
, “
Experimental Identification of a Multi-Span Masonry Bridge: The Tanaro Bridge
,”
Constr. Build. Mater.
, Vol.
22
(
10
),
2008
, pp.
2087
2099
. https://doi.org/10.1016/j.conbuildmat.2007.07.031
14.
Bayraktar
,
A.
,
Sevim
,
B.
,
Altunışık
,
A. C.
, and
Türker
,
T.
, “
Analytical and Operational Modal Analyses of Turkish Style Reinforced Concrete Minarets for Structural Identification
,”
Dyn. Test. Civil Eng. Struct. Ser.
, Vol.
2
,
2009
, pp.
65
75
.
15.
Bayraktar
,
A.
,
Türker
,
T.
,
Altunışık
,
A. C.
,
Sevim
,
B.
,
Şahin
,
A.
, and
Özcan
,
D. M.
, “
Determination of Dynamic Parameters of Buildings by Operational Modal Analysis
,”
IMO Tech. J.
, Vol.
21
(
4
),
2010
, pp.
5185
5205
.
16.
Ewins
,
D. J.
,
Modal Testing: Theory and Practice
,
Research Studies
,
Hertfordshire
,
1984
.
17.
Juang
,
J. N.
,
Applied System Identification
,
Prentice-Hall
,
Englewood Cliffs, NJ
,
1994
.
18.
Maia
,
N. M. M.
and
Silva
,
J. M. M.
,
Theoretical and Experimental Modal Analysis
,
Research Studies
,
Hertfordshire
,
1997
.
19.
Zhou
,
J.
,
Lin
,
G.
,
Zhu
,
T.
,
Jefferson
,
A. D.
, and
Williams
,
F. W.
, “
Experimental Investigation of Seismic Failure of High Arch Dams
,”
Struct. Eng.
, Vol.
126
(
8
),
2000
, pp.
926
935
. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(926)
20.
Zivanovic
,
S.
,
Pavic
,
A.
, and
Reynolds
,
P.
, “
Modal Testing and FE Model Tuning of a Lively Footbridge Structure
,”
Eng. Struct.
, Vol.
28
,
2006
, pp.
857
868
. https://doi.org/10.1016/j.engstruct.2005.10.012
21.
Bayraktar
,
A.
,
Altunışık
,
A. C.
,
Sevim
,
B.
, and
Türker
,
T.
, “
Modal Testing and Finite Element Model Calibration of an Arch Type Steel Footbridge
,”
Steel Compos. Struct.
, Vol.
7
(
6
),
2007
, pp.
487
502
.
22.
Wang
,
H.
and
Li
,
D.
, “
Experimental Study of Dynamic Damage of an Arch Dam
,”
Earthq. Eng. Struct. Dyn.
, Vol.
36
,
2007
, pp.
347
366
. https://doi.org/10.1002/eqe.637
23.
Cantieni
,
R.
, “
Experimental Methods Used in System Identification of Civil Engineering Structures
,”
2nd Workshop: Problemi di Vibrazioni Nelle Strutture Civili e Nelle Costruzioni Meccaniche
,
Perugia, Italy
, June 5–8,
2004
, pp.
10
11
.
24.
Roeck
,
G. D.
,
Peeters
,
B.
, and
Ren
,
W. X.
, “
Benchmark Study on System Identification Through Ambient Vibration Measurements
,”
Proceedings of the 18th International Modal Analysis Conference
,
San Antonio, TX
, February 7–10,
2000
, pp.
1106
1112
.
25.
Sevim
,
B.
,
Bayraktar
,
A.
,
Altunışık
,
A. C.
,
Adanur
,
S.
,
Akköse
M.
Modal Parameter Identification of a Prototype Arch Dam Using Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification Techniques
.
J. Test. Eval.
, Vol.
38
(
5
),
2010
, pp.
1
10
.
26.
Altunışık
,
A. C.
,
Bayraktar
,
A.
,
Sevim
,
B.
, and
Özdemir
,
H.
, “
Experimental and Analytical System Identification of Eynel Arch Type Steel Highway Bridge
,”
J. Constr. Steel Res.
, Vol.
67
,
2011
, pp.
1912
1921
. https://doi.org/10.1016/j.jcsr.2011.06.008
27.
Chang
,
C. C.
,
Chang
,
T. Y. P.
, and
Zhang
,
Q. W.
, “
Ambient Vibration of Long-Span Cable-Stayed Bridge
,”
J. Bridge Eng.
, Vol.
6
(
1
),
2001
, pp.
46
53
. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:1(46)
28.
Reynolds
,
P.
,
Pavic
,
A.
, and
İbrahim
,
Z.
, “
A Remote Monitoring System for Stadia Dynamics
,”
Proc. Inst. Civ. Eng., Struct. Build.
, Vol.
157
,
2004
, pp.
385
393
. https://doi.org/10.1680/stbu.2004.157.6.385
29.
Sortis
,
A. D.
,
Antonacci
,
E.
, and
Vestroni
,
F.
, “
Dynamic Identification of a Masonry Building Using Forced Vibration Tests
,”
Eng. Struct.
, Vol.
27
,
2005
, pp.
155
165
. https://doi.org/10.1016/j.engstruct.2004.08.012
30.
Dooms
,
D.
,
Degrande
,
G.
, and
Roeck
,
G. D.
, “
Finite Element Modeling of a Silo Based on Experimental Modal Analysis
,”
Eng. Struct.
, Vol.
28
,
2006
, pp.
532
542
. https://doi.org/10.1016/j.engstruct.2005.09.008
31.
Gentile
,
C.
and
Saisi
,
A.
, “
Ambient Vibration Testing of Historic Masonry Towers for Structural Identification and Damage Assessment
,”
Constr. Build. Mater.
, Vol.
21
,
2007
, pp.
1311
1321
. https://doi.org/10.1016/j.conbuildmat.2006.01.007
32.
Jacobsen
,
N. J.
,
Andersen
,
P.
, and
Brincker
,
R.
, “
Using Enhanced Frequency Domain Decomposition as a Robust Technique to Harmonic Excitation in Operational Modal Analysis
,”
Proceedings of ISMA2006: International Conference on Noise and Vibration Engineering
,
Leuven, Belgium
, September 15–17,
2006
.
33.
Bendat
,
J. S.
and
Piersol
,
A. G.
, “
Random Data: Analysis and Measurement Procedures
,”
Wiley
,
New York
,
2004
.
34.
Brincker
,
R.
,
Zhang
,
L.
, and
Andersen
,
P.
, “
Modal Identification From Ambient Responses Using Frequency Domain Decomposition
,”
Proceedings of the 18th International Modal Analysis Conference
,
San Antonio, TX
, February 7–10,
2000
, pp.
625
630
.
35.
Felber
,
A. J.
,
1993
, “
Development of Hybrid Bridge Evaluation System
,” Ph.D. thesis,
University of British Columbia
, Vancouver, Canada.
36.
Peeters
,
B.
,
2000
, “
System Identification and Damage Detection in Civil Engineering
,” Ph.D. thesis,
Katholieke Universiteit
, Leuven, Belgium.
37.
Rainieri
,
C.
,
Fabbrocino
,
G.
,
Cosenza
,
E.
, and
Manfredi
,
G.
, “
Implementation of OMA Procedures Using LabVIEW: Theory and Application
,”
2nd International Operational Modal Analysis Conference
,
Copenhagen, Denmark
, April 30–May 2,
2007
, pp.
1
13
.
38.
Altunışık
,
A. C.
,
Bayraktar
,
A.
, and
Sevim
,
B.
, “
Output-Only System Identification of Post-Tensioned Segmental Concrete Highway Bridges
,”
J. Bridge Eng.
, Vol.
16
(
2
),
2011
, pp.
259
266
. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000150
39.
Van Overschee
,
P.
and
De Moor
,
B.
,
Subspace Identification for Linear Systems: Theory-Implementation-Applications
,
Kluwer Academic
,
Boston
,
1996
.
40.
Juang
,
J. N.
and
Phan
,
M. Q.
,
Identification and Control of Mechanical Systems
,
Cambridge University Press
,
Cambridge, U.K.
,
2001
.
41.
Yu
,
D. J.
and
Ren
,
W. X.
, “
EMD-Based Stochastic Subspace Identification of Structures From Operational Vibration Measurements
,”
Eng. Struct.
, Vol.
27
,
2005
, pp.
1741
1751
. https://doi.org/10.1016/j.engstruct.2005.04.016
42.
Sevim
,
B.
,
Bayraktar
,
A.
, and
Altunışık
,
A. C.
, “
Investigation of Water Length Effects on the Modal Behavior of a Prototype Arch Dam Using Operational and Analytical Modal Analyses
,”
Struct. Eng. Mech.
, Vol.
37
(
6
),
2010
, pp.
1
23
.
43.
OMA: Operational Modal Analysis; Release 4.0
. (
2006
).
Structural Vibration Solution A/S
,
Copenhagen, Denmark
.
This content is only available via PDF.
You do not currently have access to this content.