Abstract

Zirconium and its alloys are well known for their corrosion resistance in a broad range of inorganic and organic media. They have played a key role in advancing the production technologies of urea and formic, acetic, hydroxyacetic, lactic, and methacrylic acids, methyl methacrylate, rayon, alcohols, and phenolic resins, etc. Laboratory data and case histories are used to demonstrate the advantages of zirconium and its alloys. Compared to other engineering alloys, the use of zirconium and its alloys allows producers to make products of high quality by operating processes at higher temperatures/pressures for improved efficiency and yield. Unlike many metallic ions, zirconium produces colorless ions. Most transition metals produce ions of different colors depending on their valence state. An increasingly important advantage is that zirconium appears to be nontoxic and biocompatible.

Limitations of zirconium and its alloys in organics are also discussed. They may be vulnerable in certain organic halides, such as acetyl chloride, that are incompatible with water. In water-soluble organics, such as methanol, water is necessary to inhibit localized corrosion. There are impurities, such as copper ions in acetic acid, that are undesirable for zirconium and its alloys. Control measures, such as water addition and stress relieving, can be applied to zirconium equipment in certain extreme conditions.

References

1.
Hamner
,
N. E.
,
Corrosion Data Survey
,
NACE
,
Houston
,
1974
.
2.
Cox
,
B.
, “
Oxidation of Zirconium and Its Alloys
,”
Advances in Corrosion Science and Technology
, Vol.
5
,
Fontanan
M. G.
and
Staehle
R. W.
, Eds.,
Plenum Press
,
New York
,
1976
, p. 173.
3.
Yau
,
T. L.
and
Webster
,
R. T.
, “
Corrosion of Zirconium and Hafnium
,”
Metals Handbook, 9th Ed., Vol. 13, Corrosion
,
1987
, p. 707.
4.
Guccione
,
E.
,
Chem. Eng.
,
26
09
1966
, p. 96.
5.
Zirconium Outlives Urea Synthesis Technology for Which It Was Designed
,”
Outlook
, Vol.
7
, No. 1,
Teledyne Wah Chang
,
Albany, Oregon
, Winter
1986
, p. 1.
6.
McDowell
,
D. W.
,
Chem. Eng.
,
13
05
1974
, p. 118.
7.
Miola
,
C.
and
Richter
,
H.
,
Werkst. u. Korros.
, Vol.
43
,
1992
, p. 396.
8.
Krystow
,
P. E.
,
Chem. Eng. Progress
 0360-7275, Vol.
67
, No.
4
,
1971
, p. 59.
9.
Explosion Rips Louisiana Urea Plant
,”
Chem. & Eng. News
 0009-2347,
03
08
1992
, p. 14.
10.
Corrosion Resistance of Nickel-Containing Alloys in Organic Acids and Related Compounds
,” CEB-6,
INCO
,
New York
,
1979
.
11.
Togano
,
H.
and
Osato
,
K.
,
Boshoku Gijutsu
, Vol.
10
, No.
13
,
1961
, p. 529.
12.
Shimose
,
T.
,
Takamura
,
A.
, and
Segawa
,
S.
,
Boshoku Gijutsu
, Vol.
15
, No.
2
,
1966
, p. 49.
13.
Yau
,
T. L.
,
Outlook
, Vol.
8
, No. 3,
Teledyne Wah Chang
,
Albany, OR
, Summer
1987
, p. 2.
14.
Weymouth
,
F. J.
and
Millidge
,
A. F.
,
Chem. Ind. (London)
,
28
05
1966
, p. 887.
15.
Paulik
,
P. E.
and
Roth
,
J. F.
,
Chem. Commun.
,
1968
, p. 1578.
16.
Zirconium Heat Exchangers Resist Corrosion in the Production of Acetic Acid and Anhydride
,”
Outlook
, Vol.
4
, No. 2,
Teledyne Wah Chang
,
Albany, or
, Spring
1983
, p. 1.
17.
In Acetic Acid—ICI Australia Increases Equipment Life by Converting to Zircadyne® 702
,”
Outlook
, Vol.
11
, No.
1
, Winter/Spring 1990, p. 6.
18.
Bird
,
K.
,
Outlook
, Vol.
13
, No.
4
, Fall
1994
, p. 1.
19.
Yau
,
T. L.
,
Werkst. u. Korros.
, Vol.
43
,
1992
, p. 358.
20.
Yau
,
T. L.
and
Bird
,
K.
, “
A Comparison of Zirconium and Titanium in Acetic Acid
,”
The First NACE Asian Conference
, 7–11 September 1992,
Singapore
.
21.
Yau
,
T. L.
,
Outlook
, Vol.
9
, No. 3,
Teledyne Wah Chang
,
Albany, OR
, Summer
1988
, p. 6.
22.
Leonard
,
J. D.
, European Patent No. 5,998,
12
12
1979
.
23.
Kemira Specifies Zircadyne® 702 for Use in a Formic Acid Application
,”
Outlook
,
Teledyne Wah Chang
, Vol.
11
, No. 1,
Albany, OR
, Winter/Spring 1990, p. 1.
24.
Sundquist
,
J.
,
Outlook
, Vol.
11
, No.
1
, Winter/Spring 1990, p. 4.
25.
Poppius
,
K.
,
Hortling
,
B.
, and
Sundquist
,
J.
, “
Chlorine-Free Bleaching of Chemical Pulps—The Potential of Organic Peroxyacids
,” International Symposium on Wood and Pulping Chemistry,
Raleigh, NC
, 22–25 May 1989.
26.
Bloom
,
R.
, Jr.
,
Weeks
,
L. E.
, and
Raleigh
,
C. W.
,
Corrosion
, Vol.
16
,
1960
, p. 164t.
27.
Yau
,
T. L.
,
Tappi J.
, Vol.
74
, No.
3
,
1991
, p. 149.
28.
Rohm and Haas Chooses Equipment Made from Zircadyne® Zirconium
,”
Outlook
, Vol.
11
, No. 2,
Teledyne Wah Chang
,
Albany, OR
, Summer
1990
, p. 1.
29.
Frechem
,
B. S.
,
Morrison
,
J. G.
, and
Webster
,
R. T.
,
Industrial Applications of Titanium and Zirconium, STP 728
,
American Society for Testing and Materials
,
Philadelphia
,
1981
, p. 85.
30.
Yau
,
T. L.
and
Webster
,
R. T.
,
Corrosion
, Vol.
39
,
1983
, p. 218.
31.
Oregon Metallurgical Corporation Casts World's Largest One-Piece Zirconium Pump from Zircadyne,®
Outlook
, Vol.
12
, No. 1,
Teledyne Wah Chang
,
Albany, OR
, Summer
1991
, p. 1.
32.
Zircadyne® 705 Chosen for Use in TVA's Ethanol-From-WoodProcess
,”
Outlook
, Vol.
7
, No.
3
, Summer
1986
, p. 1.
33.
Webster
,
R. T.
and
Yau
,
T. L.
,
Materials Performance
,
02
1986
, p. 15.
34.
Zircadyne® Reactor Recycles Waste
,”
Outlook
, Vol.
15
, No. 1,
Teledyne Wah Chang
,
Albany, OR
, 1st Quarter 1994, p. 1.
35.
Fitzgerald
,
B. J.
,
Yau
,
T. L.
, and
Webster
,
R. T.
, “
Stress Corrosion Cracking of Zirconium and Its Control in Sulfuric Acid
,”
Corrosion 92
, Paper No. 154,
NACE
,
Houston
.
36.
Fitzgerald
,
B. J.
and
Yau
,
T. L.
, '
The Mechanism and Control of Stress Corrosion Cracking of Zirconium in Sulfuric Acid
,” 12th International Corrosion Congress, Paper No. 92,
Houston
, 19–24 Sept. 1993.
37.
Bowen
,
L. B.
,
Industrial Applications of Titanium and Zirconium, STP 728
,
American Society for Testing and Materials
,
Philadelphia
,
1981
, p. 119.
38.
Rayon Producer Converts 26 Heat Exchangers to Zircadyne® Zirconium
,”
Outlook
, Vol.
10
, No. 3,
Teledyne Wah Chang
,
Albany, OR
, Fall
1989
, p. 1.
39.
DuPont Acid Dissolves Problems: Zircadyne-Lined Tube Meets Belle Plant Production Challenge
,”
Outlook
, Vol.
14
, No.
3
, Summer
1993
, p. 1.
40.
Yau
,
T. L.
and
Maguire
,
M.
, “
Control of Localized Corrosion of Zirconium in Oxidizing Chloride Media
,”
Advances in Localized Corrosion
,
NACE
,
Houston
,
1990
, p. 311.
41.
Yau
,
T. L.
,
Industrial Applications of Titanium and Zirconium, STP 917
, Vol.
4
,
American Society for Testing and Materials
,
Philadelphia
,
1986
, p. 57.
42.
Mori
,
K.
,
Takamura
,
A.
, and
Shimose
,
T.
,
Corrosion
, Vol.
22
,
1966
, p. 29.
43.
De
,
P. K.
,
Elayaperumal
,
K.
, and
Balachandra
,
J.
,
Corrosion Science
 0010-938X, Vol.
11
,
1971
, p. 579.
44.
Yau
,
T. L.
, “
Zirconium
,”
Corrosion and Corrosion Protection Handbook, 2nd Edition
,
Schweitzer
P. A.
, Ed.,
Marcel Dekker
,
New York City
,
1989
, p. 231.
45.
Cox
,
B.
, Reports AECL-3551, 3612, and 3799,
Atomic Energy of Canada Ltd
.
46.
Thayer
,
J. S.
,
Chemtech
 0009-2703, Vol.
20
, No.
3
,
1980
, p. 188.
This content is only available via PDF.
You do not currently have access to this content.