Abstract

The design and construction of a high temperature tube burst test apparatus is described. The apparatus consists of an internally heated ceramic tube specimen, internal O-ring pressure seals, water-cooled end caps, steel end plates, and an explosion-resistant steel test chamber. The ceramic tube specimen floats freely on the internal O-ring seal, thus avoiding axial stresses due to end constraints and/or axial thermal expansion. The apparatus is capable of obtaining test temperatures up to 1400°C, pressures to 68.9 MPa (10 000 psi), and capturing tube fragments in a “witness shield” for fractographic analysis. The use of the apparatus is demonstrated by relating strengths measured for 660 mm (26 in.) long by 44 mm (1.75 in.) diameter SiC tubes to the strength distribution of O-ring and C-ring specimens tested at 1200°C using Weibull statistics to scale the specimen sizes. Advantages and disadvantages of the tube burst test apparatus are discussed.

References

1.
Weibull
,
W.
, “
A Statistical Theory of the Strength of Materials
,”
Royal Swedish Academy of Eng. Sci. Proc.
, Vol.
151
,
1939
, pp.
1
-
45
.
2.
Weibull
,
W.
, “
A Statistical Distribution Function of Wide Applicability
,”
Journal of Applied Mechanics
 0021-8936, Vol.
18
,
1951
, pp.
293
-
297
.
3.
Batdorf
,
S. B.
and
Crose
,
J. G.
, “
A Statistical Theory for the Fracture of Brittle Structures Subjected to Nonuniform Polyaxial Stresses
,”
Journal of Applied Mechanics
 0021-8936, Vol.
41
, No.
2
,
1974
, pp.
459
-
464
.
4.
Batdorf
,
S. B.
, “
Fundamentals of the Statistical Theory of Fracture
,” in
Fracture Mechanics of Ceramics
, Vol.
3
,
Hasselman
D. P. H.
and
Lange
F. F.
, Eds.,
Plenum Press
,
New York
,
1973
, pp.
1
-
29
.
5.
Batdorf
,
S. B.
and
Heinisch
,
H. L.
, Jr.
, “
Weakest Link Theory Reformulated for Arbitrary Fracture Criterion
,”
Journal of the American Ceramic Society
 0002-7820, Vol.
61
, Nos.
7–8
,
1978
, pp.
355
-
358
.
6.
Lamon
,
J.
and
Evans
,
A. G.
, “
Statistical Analysis of Bending Strengths for Brittle Solids: A Multiaxial Fracture Problem
,”
Journal of the American Ceramic Society
 0002-7820 https://doi.org/10.1111/j.1151-2916.1983.tb10012.x, Vol.
66
, No.
3
,
1978
, pp.
177
-
182
.
7.
Evans
,
A. G.
, “
A General Approach for the Statistical Analysis of Multiaxial Fracture
,”
Journal of the American Ceramic Society
 0002-7820, Vol.
61
, Nos.
7–8
,
1978
, pp.
302
-
308
.
8.
Lamon
,
J.
, “
Statistical Approaches to Failure for Ceramic Reliability Assessment
,”
Journal of the American Ceramic Society
 0002-7820, Vol.
71
, No.
2
,
1988
, pp.
106
-
112
.
9.
Carroll
,
D. F.
and
Tressler
,
R. E.
, “
Effects of Creep Damage on the Tensile Creep Behavior of a Siliconized Silicon Carbide
,”
Journal of the American Ceramic Society
 0002-7820 https://doi.org/10.1111/j.1151-2916.1989.tb05952.x, Vol.
72
, No.
1
,
1989
, pp.
49
-
53
.
10.
Chuang
,
T.-J.
and
Wiederhorn
,
S. M.
, “
Damage-Enhanced Creep in a Siliconized Silicon Carbide: Mechanisms of Deformation
,”
Journal of the American Ceramic Society
 0002-7820, Vol.
71
, No.
7
,
1988
, pp.
595
-
601
.
11.
Wiederhorn
,
S. M.
,
Roberts
,
D. E.
,
Chuang
,
T.-J.
, and
Chuck
,
L.
, “
Damage-Enhanced Creep in a Siliconized Silicon Carbide: Phenomenology
,”
Journal of the American Ceramic Society
 0002-7820, Vol.
71
, No.
7
,
1988
, pp.
602
-
608
.
12.
Jadaan
,
O. M.
,
Shelleman
,
D. L.
,
Conway
,
J. C.
, Jr.
,
Mecholsky
,
J. J.
, Jr.
, and
Tressler
,
R. E.
, “
Prediction of the Strength of Tubular Ceramic Components: Part I—Analysis
,”
Journal of Testing and Evaluation
 0090-3973, Vol.
19
, No.
3
,
05
1991
, pp.
180
-
191
.
13.
Shelleman
,
D. L.
,
Jadaan
,
O. M.
,
Conway
,
J. C.
, Jr.
, and
Mecholsky
,
J. J.
, Jr.
, “
Prediction of the Strength of Tubular Ceramic Components: Part II—Experimental Verification
,”
Journal of Testing and Evaluation
 0090-3973, Vol.
19
, No.
3
,
05
1991
, pp.
192
-
200
.
14.
Solar Turbines, Inc.
, San Diego, Calif.
15.
National Institute of Science and Technology
, Gaithersburg, Md.
16.
Holloway
,
J. R.
, “
Internally Heated Pressure Vessles
,” in
Research Techniques for High Pressure and High Temperature
,
Ulmer
G. C.
, Ed.,
Springer-Verlag
,
New York
,
1971
.
17.
Johnson
,
C. A.
and
Tucker
,
W. T.
, “
Advanced Statistical Concepts of Fracture in Brittle Materials
,” pp.
3
-
5
in
Ceram. Tech. Newsletter
, No.
21
,
ORNL
,
Oak Ridge, Tenn.
,
1989
.
18.
Timoshenko
,
S. P.
and
Goodier
,
J. N.
,
Theory of Elasticity
, 3rd ed.,
McGraw-Hill
,
New York
, pp.
8
-
85
.
19.
Boley
,
B. A.
and
Weiner
,
J. H.
,
Theory of Thermal Stresses
,
Wiley
,
New York
,
1960
.
20.
Timoshenko
,
S.
, pp.
533
-
541
in
Strength of Materials: Part II—Advanced Theory and Problems
, 3rd Ed.,
R. E. Krieger Publishing Co.
,
1983
.
21.
Segall
,
A. E.
,
Hellmann
,
J. R.
, and
Strzepa
,
P.
, “
Experimental and Analytical Evaluation of the Mechanical Performance of a Gas-Fired Ceramic Radiant Tube at Steady-State
,”
Journal of Testing and Evaluation
 0090-3973, Vol.
18
, No.
4
,
07
1990
, pp.
250
-
255
.
22.
Hellmann
,
J. R.
and
Segall
,
A. E.
, “
Thermomechanical Performance of Ceramic Radiant Tubes
,” in
Proceedings
,
Conf. on Ceramics in Energy Applications
,
Sheffield
,
04
1990
, pp.
33
-
47
.
23.
Jadaan
,
O. M.
, “
Fast Fracture and Lifetime Prediction of Ceramic Tubular Components
,” Ph.D. thesis,
The Pennsylvania State University
, University Park,
12
1990
.
24.
Srinivasan
,
R.
and
Wharton
,
R. M.
, “
Confidence Bounds for the Weibull Distribution
,”
Technometrics
 0040-1706, Vol.
17
, No.
3
,
1975
, pp.
375
-
380
.
25.
Kanofsky
,
P.
and
Srinivasan
,
R.
, “
An Approach to the Construction of Parametric Confidence Bands on Cumulative Distribution Functions
,”
Biometrika
 0006-3444, Vol.
59
, No.
3
,
1972
, pp.
623
-
631
.
26.
Jadaan
,
O. M.
,
Shelleman
,
D. L.
, and
Tressler
,
R. E.
, “
Lifetime Prediction of Internally Pressurized Siliconized Silicon Carbide Tubes Subjected to Creep Rupture Loading
,” accepted for publication in the
Journal of the American Ceramic Society
 0002-7820.
This content is only available via PDF.
You do not currently have access to this content.