Abstract

Residual stress distribution in medium density polyethylene (MDPE) 102 mm (4 in.) pipe with 11.1 mm wall thickness is evaluated using three different procedures. A modified layer removal procedure is employed to evaluate the residual stress component in the longitudinal direction as a function of the pipe wall thickness. On the other hand, the residual stress distribution in the circumferential direction is estimated using the conventional ring slitting method. A strain gage technique for direct residual strain measurements is described. The results obtained from the three procedures in a given direction are in qualitative agreements. A tensile residual stress dominates about 24% of the inner section of the pipe wall. The residual stress then becomes compressive reaching its maximum value at the outermost layer.

The stress values obtained from the first two techniques appear unrealistically excessive. On the other hand, those obtained from direct strain measurements appear reasonable as indicated by recent crack propagation studies in the specimens prepared from the same pipe sample.

References

1.
Barrett
,
C. S.
, “
Experimental Stress Analysis
,”
Proceedings of the Society for Experimental Stress Analysis
, Vol.
II
, No.
I
,
05
1944
, pp.
147
-
156
.
2.
Hodgkinson
,
J. M.
and
Williams
,
J. G.
in
Deformation, Yield and Fracture of Polymers
,
1983
, pp. 35.1-7.
3.
Sandilands
,
G. J.
and
White
,
J. R.
,
Polymer
 0032-3861, Vol.
21
,
03
1980
, pp.
338
-
343
.
4.
So
,
P.
and
Broutman
,
L. J.
,
Polymer Engineering and Science
 0032-3888 https://doi.org/10.1002/pen.760161202, Vol.
16
, No.
12
,
1976
, pp.
785
-
791
.
5.
Mandell
,
J. F.
,
Smith
,
K. L.
, and
Haung
,
D. D.
,
Polymer Engineering and Science
 0032-3888, Vol.
21
, No.
17
,
1981
, pp.
1173
-
1180
.
6.
Struick
,
L. C. E.
,
Polymer Engineering and Science
 0032-3888, Vol.
18
, No.
10
,
1978
, pp.
799
-
811
.
7.
Coxon
,
L. D.
and
White
,
J. R.
,
Polymer Engineering and Science
 0032-3888 https://doi.org/10.1002/pen.760200311, Vol.
20
, No.
3
,
1980
, pp.
230
-
236
.
8.
Kamal
,
M. R.
and
Tan
,
V.
,
Polymer Engineering and Science
 0032-3888, Vol.
19
, No.
8
,
1979
, pp.
558
-
563
.
9.
Mills
,
N. J.
, in
Deformation, Yield and Fracture of Polymers
,
1983
, pp. 36.1-5.
10.
Timoshenko
,
S.
, “
Strength of Materials: Part II—Advanced Theory and Problems
,”
Mechanical Properties of Materials
, 3rd ed., Chapter X,
D. Van Nostrand
,
New York
,
1958
.
11.
Glinka
,
G.
in
Fracture Mechanics (Eleventh Conference)
, ASTM STP677,
Smith
C. W.
, Ed.,
American Society for Testing and Materials
,
Philadelphia
,
1979
, pp.
198
-
214
.
12.
Williams
,
J. G.
,
Hodgkinson
,
J. M.
, and
Gray
,
A.
,
Polymer Engineering and Science
 0032-3888 https://doi.org/10.1002/pen.760211304, Vol.
21
, No.
13
,
1981
, pp.
822
-
828
.
13.
Bhatnagar
,
A.
and
Broutman
,
L. J.
,
SPE ANTEC '85
,
1985
, pp.
545
-
549
.
14.
Treuting
,
R. G.
and
Read
,
T. W.
, Jr.
,
Journal of Applied Physics
 0021-8979 https://doi.org/10.1063/1.1699913, Vol.
22
, No.
2
,
1951
, pp.
130
-
134
.
15.
Ram
,
A.
,
Zilber
,
O.
, and
Kenig
,
S.
,
Polymer Engineering and Science
 0032-3888 https://doi.org/10.1002/pen.760250911, Vol.
25
, No.
9
,
1985
, pp.
577
-
581
.
16.
Sachs
,
V. G.
,
Zeitschrift für Metallkunde
 0044-3093, Vol.
19
,
09
1927
, pp.
352
-
357
(in German).
17.
Micro-Measurements Catalogue, Gage Listings Section
,
Measurements Group
,
1981
, pp.
IL
-
46L
.
18.
Chaoui
,
K.
,
Chudnovsky
,
A.
, and
Moet
,
A.
,
Journal of Materials Science
 0022-2461, Vol.
22
,
1987
, pp.
3873
-
3879
.
This content is only available via PDF.
You do not currently have access to this content.