Abstract
This paper discusses permeability (fluid flow) as a function of porosity (void volume) and average pore size, the most probable pore-size distribution, alternative meanings of average pore size, and how these measurements correlate with results of separate filtration tests.
References
1.
Johnston
, P. R.
and Swanson
, R. R.
, “A Correlation Between the Results of Different Instruments Used to Determine the Particle-Size Distribution in AC Fine Test Dust
,” Powder Technology
0032-5910, Vol. 32
, No. 1
, 1982
, pp. 119
-124
.2.
Mickelson
, R. W.
, “Laminar Transition, and Turbulent Flow in Capillary Tubes
,” Ph.D. thesis, Wayne State University
, Detroit, MI, 1964
, available from University Microfilms, Ann Arbor, MI, as Item 670674.3.
Green
, L.
and Duwez
, P.
, “Fluid Flow Through Porous Metals
,” Journal of Applied Mechanics
0021-8936, Vol. 18
, 1951
, pp. 39
-45
.4.
Johnston
, P. R.
, “The Most Probable Pore-Size Distribution in Fluid Filter Media: Parts I and II
,” Journal of Testing and Evaluation
0090-3973, Vol. 11
, No. 2
, 03
1983
, pp. 117
-125
.5.
Abbasi
, M. H.
, Evans
, J. W.
, and Abramson
, I. S.
, “Diffusion of Gases in Porous Solids: Monte Carlo Simulations in the Knudsen and Ordinary Diffusion Regimes
,” American Institute of Chemical Engineers Journal
, Vol. 29
, No. 4
, 1983
, p. 617.6.
Johnston
, P. R.
, “Determining the Average Pore Diameter in Tubular Filter Cartridges (Candles) from Fluid-Permeability Measurements
,” presented at World Filtration Congress III
, Philadelphia
, 09
1982
, available from Wells Shoemaker, RD 1, Box 171, Shippensburg, PA 17257.7.
Rosenstein
, N. D.
, Dybbs
, A.
, and Edwards
, R. V.
, “Non-Linear Laminar Flow in a Porous Medium
,” Publication FTAS/TR-80-148, Department of Mechanical and Aerospace Engineering, Case Western Reserve University
, Cleveland, OH, 1980
.8.
Scheidegger
, A. E.
, The Physics of Flow Through Porous Media
, University of Toronto Press
, Toronto
, 1974
, pp. 152
-153
.9.
Muskat
, M.
, The Flow of Homogenous Fluids Through Porous Media
, J. W. Edwards
, Ann Arbor, MI
, 1946
, p. 61.10.
Carman
, P. C.
, “Fluid Flow Through Granual Beds
,” Transactions of Institute of Chemical Engineers
(London), Vol. 15
, 1937
, pp. 150
-155
;Flow of Gases Through Porous Media
, Academic Press
, New York
, 1956
, Chapter I.11.
Grace
, H. P.
, “Structure and Performance of Filter Media: Part I
,” American Institute of Chemical Engineers Journal
, Vol. 2
, No. 3
, 09
1956
, pp. 307
-315
.12.
Piekaar
, H. W.
and Clarenburg
, L. A.
, “Aerosol Filters—Pore Size Distribution in Fibrous Filters
,” Chemical Engineering Science
0009-2509 https://doi.org/10.1016/0009-2509(67)80068-X, Vol. 22
, 1967
, pp. 1399
-1408
.13.
Johnston
, P. R.
, “Submicron Filtration
,” Filtration and Separation
, Vol. 12
, No. 4
, July/Aug. 1975, pp. 352
-353
;Chemical Engineering Progress
0360-7275, Vol. 71
, No. 12
, 12
1975
, pp. 70
-73
.14.
Morland
, C. D.
and Gecosala
, R. R.
, “Predicting Filtration Efficiency Performance of Fibrous Media
,” presented at World Filtration Congress III
, Philadelphia
, 09
1982
, avaiable from Wells Shoemaker, RD 1, Box 171, Shippensburg, PA 17257.15.
Johnston
, P. R.
and Meltzer
, T. H.
, “Comments on Organism-Challenge Levels in Sterilizing-Filter Efficiency Testing
,” Pharmaceutical Technology
, Vol. 3
, No. 11
, 11
1979
, pp. 66
-70
, 110.
This content is only available via PDF.
All rights reserved. This material may not be reproduced or copied, in whole or in part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ASTM International.
You do not currently have access to this content.