Abstract

This paper discusses permeability (fluid flow) as a function of porosity (void volume) and average pore size, the most probable pore-size distribution, alternative meanings of average pore size, and how these measurements correlate with results of separate filtration tests.

References

1.
Johnston
,
P. R.
and
Swanson
,
R. R.
, “
A Correlation Between the Results of Different Instruments Used to Determine the Particle-Size Distribution in AC Fine Test Dust
,”
Powder Technology
 0032-5910, Vol.
32
, No.
1
,
1982
, pp.
119
-
124
.
2.
Mickelson
,
R. W.
, “
Laminar Transition, and Turbulent Flow in Capillary Tubes
,” Ph.D. thesis,
Wayne State University
, Detroit, MI,
1964
, available from University Microfilms, Ann Arbor, MI, as Item 670674.
3.
Green
,
L.
and
Duwez
,
P.
, “
Fluid Flow Through Porous Metals
,”
Journal of Applied Mechanics
 0021-8936, Vol.
18
,
1951
, pp.
39
-
45
.
4.
Johnston
,
P. R.
, “
The Most Probable Pore-Size Distribution in Fluid Filter Media: Parts I and II
,”
Journal of Testing and Evaluation
 0090-3973, Vol.
11
, No.
2
,
03
1983
, pp.
117
-
125
.
5.
Abbasi
,
M. H.
,
Evans
,
J. W.
, and
Abramson
,
I. S.
, “
Diffusion of Gases in Porous Solids: Monte Carlo Simulations in the Knudsen and Ordinary Diffusion Regimes
,”
American Institute of Chemical Engineers Journal
, Vol.
29
, No.
4
,
1983
, p. 617.
6.
Johnston
,
P. R.
, “
Determining the Average Pore Diameter in Tubular Filter Cartridges (Candles) from Fluid-Permeability Measurements
,” presented at
World Filtration Congress III
,
Philadelphia
,
09
1982
, available from Wells Shoemaker, RD 1, Box 171, Shippensburg, PA 17257.
7.
Rosenstein
,
N. D.
,
Dybbs
,
A.
, and
Edwards
,
R. V.
, “
Non-Linear Laminar Flow in a Porous Medium
,” Publication FTAS/TR-80-148,
Department of Mechanical and Aerospace Engineering, Case Western Reserve University
, Cleveland, OH,
1980
.
8.
Scheidegger
,
A. E.
,
The Physics of Flow Through Porous Media
,
University of Toronto Press
,
Toronto
,
1974
, pp.
152
-
153
.
9.
Muskat
,
M.
,
The Flow of Homogenous Fluids Through Porous Media
,
J. W. Edwards
,
Ann Arbor, MI
,
1946
, p. 61.
10.
Carman
,
P. C.
, “
Fluid Flow Through Granual Beds
,”
Transactions of Institute of Chemical Engineers
(London), Vol.
15
,
1937
, pp.
150
-
155
;
Flow of Gases Through Porous Media
,
Academic Press
,
New York
,
1956
, Chapter I.
11.
Grace
,
H. P.
, “
Structure and Performance of Filter Media: Part I
,”
American Institute of Chemical Engineers Journal
, Vol.
2
, No.
3
,
09
1956
, pp.
307
-
315
.
12.
Piekaar
,
H. W.
and
Clarenburg
,
L. A.
, “
Aerosol Filters—Pore Size Distribution in Fibrous Filters
,”
Chemical Engineering Science
 0009-2509 https://doi.org/10.1016/0009-2509(67)80068-X, Vol.
22
,
1967
, pp.
1399
-
1408
.
13.
Johnston
,
P. R.
, “
Submicron Filtration
,”
Filtration and Separation
, Vol.
12
, No.
4
, July/Aug. 1975, pp.
352
-
353
;
Chemical Engineering Progress
 0360-7275, Vol.
71
, No.
12
,
12
1975
, pp.
70
-
73
.
14.
Morland
,
C. D.
and
Gecosala
,
R. R.
, “
Predicting Filtration Efficiency Performance of Fibrous Media
,” presented at
World Filtration Congress III
,
Philadelphia
,
09
1982
, avaiable from Wells Shoemaker, RD 1, Box 171, Shippensburg, PA 17257.
15.
Johnston
,
P. R.
and
Meltzer
,
T. H.
, “
Comments on Organism-Challenge Levels in Sterilizing-Filter Efficiency Testing
,”
Pharmaceutical Technology
, Vol.
3
, No.
11
,
11
1979
, pp.
66
-
70
, 110.
This content is only available via PDF.
You do not currently have access to this content.