Abstract

Advanced internally cooled liquid desiccant air dehumidifiers enhance overall air-conditioning efficiency by incorporating internal cooling mechanisms. Their existing simulation models require detailed dehumidifier information, are computationally expensive, and pose challenges in convergence, which makes them unsuitable for integration into Building Energy Simulation software for air-conditioning system simulation. This study aims to investigate a method to generate models with less computational demands during simulation using artificial neural networks to represent the operation of an internally cooled dehumidifier. A comprehensive finite difference model was used to generate a data set representative of the expected operation conditions of the device for training the neural network. Various network configurations were explored to assess their impact on prediction precision, following a trial-and-error approach. During the training process, the neural networks reached R values between 0.96 and 0.98 for the different variables. Then, the networks were implemented in a stand-alone code, independent from training, and using basic programming methods. In this implementation, the trained networks underwent a secondary evaluation for prediction accuracy using a distinct data set from the training stage, proving accurate to simulate the internally cooled dehumidifier, reaching values well below 10% for the five predicted outlet variables in comparison to the validated, detailed finite differences model. The overall best performance was found for a network comprising two hidden layers of ten neurons each. This is the initial step towards incorporating neural network models into specialized Building Energy Simulation software, as the foundation for conducting system-level, transient, and long-term simulations.

References

1.
American Society of Heating Refrigerating and Air-Conditioning Engineers
,
2017
, “ANSI/ASHRAE Standard 55-2017 Thermal Environmental Conditions for Human Occupancy,” Atlanta, GA.
2.
Burch
,
J.
,
Woods
,
J.
,
Kozubal
,
E.
, and
Boranian
,
A.
,
2012
, “
Zero Energy Communities With Central Solar Plants Using Liquid Desiccants and Local Storage
,”
Energy Procedia
,
30
(Special Issue: 1st International Conference on Solar Heating and Cooling for Buildings and Industry (SHC 2012)), pp.
55
64
.
3.
Dean
,
J.
,
Kozubal
,
E.
,
Herrmann
,
L.
,
Miller
,
J.
,
Lowenstein
,
A.
, and
Slayzak
,
S.
,
2012
, “
Solar-Powered, Liquid-Desiccant Air Conditioner for Low-Electricity Humidity Control
.”
4.
Kozubal
,
E.
,
Herrmann
,
L.
,
Deru
,
M.
, and
Clark
,
J.
,
2014
, “
Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations
.”
5.
Kozubal
,
E.
,
Woods
,
J.
,
Burch
,
J.
,
Boranian
,
A.
, and
Merrigan
,
T.
,
2011
, “Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning.”
6.
Kozubal
,
E.
,
Herrmann
,
L.
,
Deru
,
M.
,
Clark
,
J.
, and
Lowenstein
,
A.
,
2014
, “Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications.”
7.
Salikandi
,
M.
,
Ranjbar
,
B.
,
Shirkhan
,
E.
,
Shanmuga Priya
,
S.
,
Thirunavukkarasu
,
I.
, and
Sudhakar
,
K.
,
2021
, “
Recent Trends in Liquid Desiccant Materials and Cooling Systems: Application, Performance and Regeneration Characteristics
,”
J. Build. Eng.
,
33
, p.
101579
.
8.
Fumo
,
N.
,
Goswami
,
D. Y.
, and
Goswami
,
G.
,
2002
, “
Study of an Aqueous Lithium Chloride Desiccant System: Air Dehumidification and Desiccant Regeneration
,”
Sol. Energy
,
72
(
4
), pp.
351
361
.
9.
Qi
,
R.
,
Dong
,
C.
, and
Zhang
,
L. Z.
,
2020
, “
A Review of Liquid Desiccant Air Dehumidification: From System to Material Manipulations
,”
Energy Build.
,
215
, p.
109897
.
10.
Abdel-Salam
,
A. H.
, and
Simonson
,
C. J.
,
2016
, “
State-of-the-Art in Liquid Desiccant Air Conditioning Equipment and Systems
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
1152
1183
.
11.
Kessling
,
W.
,
Laevemann
,
E.
, and
Peltzer
,
M.
,
1998
, “
Energy Storage in Open Cycle Liquid Desiccant Cooling Systems
,”
Int. J. Refrig.
,
21
(
2
), pp.
150
156
.
12.
Yadav
,
Y. K.
,
1995
, “
Vapour-Compression and Liquid-Desiccant Hybrid Solar Space-Conditioning System for Energy Conservation
,”
Renewable Energy
,
6
(
95
), p.
719
.
13.
Gao
,
Z.
,
Kumar
,
N.
,
Yang
,
Z.
,
Gluesenkamp
,
K.
,
Abuheiba
,
A.
,
Moghaddam
,
S.
, and
Baxter
,
V.
,
2021
, “
Internally Cooled Membrane-Based Absorber for Dehumidification and Water Heating: Validated Model and Simulation Study
,”
Energy Convers. Manage.
,
230
, p.
113787
.
14.
Guan
,
B.
,
Liu
,
X.
, and
Zhang
,
T.
,
2020
, “
Optimization of Solution Concentration in Liquid Desiccant Air-Conditioning System Driven by Heat Pump
,”
Energy Build.
,
225
, p.
110290
.
15.
Guan
,
B.
,
Liu
,
X.
,
Zhang
,
T.
, and
Liu
,
J.
,
2021
, “
Optimal Flow Type in Internally-Cooled Liquid-Desiccant System Driven by Heat Pump: Component Level vs. System Level
,”
Appl. Therm. Eng.
,
183
(
1
), p.
116208
.
16.
Lee
,
J. H.
, and
Jeong
,
J. W.
,
2021
, “
Hybrid Heat-Pump-Driven Liquid-Desiccant System: Experimental Performance Analysis for Residential Air-Conditioning Applications
,”
Appl. Therm. Eng.
,
195
, p.
117236
.
17.
Lee
,
J. H.
,
Ko
,
J. Y.
, and
Jeong
,
J. W.
,
2021
, “
Design of Heat Pump-Driven Liquid Desiccant Air Conditioning Systems for Residential Building
,”
Appl. Therm. Eng.
,
183
(
2
), p.
116207
.
18.
Liu
,
X.
,
Xie
,
Y.
,
Zhang
,
T.
,
Chen
,
L.
, and
Cong
,
L.
,
2018
, “
Experimental Investigation of a Counter-Flow Heat Pump Driven Liquid Desiccant Dehumidification System
,”
Energy Build.
,
179
, pp.
223
238
.
19.
Liu
,
J.
,
Zhang
,
T.
, and
Liu
,
X.
,
2018
, “
Model-Based Investigation of a Heat Pump Driven, Internally Cooled Liquid Desiccant Dehumidification System
,”
Build. Environ.
,
143
, pp.
431
442
.
20.
Liu
,
J.
,
Liu
,
X.
, and
Zhang
,
T.
,
2020
, “
Performance of Heat Pump Driven Internally Cooled Liquid Desiccant Dehumidification System
,”
Energy Convers. Manage.
,
205
, p.
112447
.
21.
Su
,
W.
,
Li
,
W.
,
Zhou
,
J.
, and
Zhang
,
X.
,
2018
, “
Experimental Investigation on a Novel Frost-Free Air Source Heat Pump System Combined With Liquid Desiccant Dehumidification and Closed-Circuit Regeneration
,”
Energy Convers. Manage.
,
178
, pp.
13
25
.
22.
Zhang
,
Q.
,
Liu
,
X.
,
Zhang
,
T.
, and
Xie
,
Y.
,
2020
, “
Performance Optimization of a Heat Pump Driven Liquid Desiccant Dehumidification System Using Exergy Analysis
,”
Energy
,
204
, p.
117891
.
23.
Liang
,
C.
,
Li
,
X.
,
Shi
,
W.
, and
Wang
,
B.
,
2021
, “
A Direct Expansion Air Handling Unit Assisted by Liquid Desiccant for Different Sensible and Latent Heat Ratios
,”
Energy Build.
,
238
, p.
110672
.
24.
Peng
,
D.
, and
Luo
,
D.
,
2020
, “
Influence of Heat Recovery on the Performance of a Liquid Desiccant and Heat Pump Hybrid System
,”
Appl. Therm. Eng.
,
165
, p.
114491
.
25.
Sanaye
,
S.
, and
Taheri
,
M.
,
2018
, “
Modeling and Multi-Objective Optimization of a Modified Hybrid Liquid Desiccant Heat Pump (LD-HP) System for Hot and Humid Regions
,”
Appl. Therm. Eng.
,
129
, pp.
212
229
.
26.
Shan
,
N.
,
Yin
,
Y.
, and
Zhang
,
X.
,
2018
, “
Study on Performance of a Novel Energy-Efficient Heat Pump System Using Liquid Desiccant
,”
Appl. Energy
,
219
, pp.
325
337
.
27.
Gao
,
Z.
,
Yang
,
Z.
,
Kumar
,
N.
,
Gluesenkamp
,
K.
,
Abuheiba
,
A.
, and
Baxter
,
V.
,
2021
, “
Effectiveness of Advanced Three-Fluid Heat and Mass Exchanger
,”
ASHRAE Annual Conference
,
Phoenix, AZ
,
June 26–30
, pp
373
381
.
28.
Abdel-Salam
,
A. H.
, and
Simonson
,
C. J.
,
2014
, “
Annual Evaluation of Energy, Environmental and Economic Performances of a Membrane Liquid Desiccant air Conditioning System With/Without ERV
,”
Appl. Energy
,
116
, pp.
134
148
.
29.
Storle
,
D.
, and
Abdel-Salam
,
M.
,
2019
, “
Performance Evaluation of a Three-Fluid Liquid Desiccant Membrane Air-Conditioning System
,”
ASHRAE Annual Conference
,
Kansas City, MO
,
June 22–26
, pp.
548
565
.
30.
Storle
,
D.
,
Abdel-Salam
,
M. R. H.
, and
Simonson
,
C. J.
,
2019
, “
Energy Performance Comparison of a 3-Fluid and 2-Fluid Liquid Desiccant Membrane Air-Conditioning Systems in an Office Building
,”
Energy
,
176
, pp.
437
456
.
31.
Huang
,
S. M.
,
Yang
,
M.
,
Hu
,
B.
,
Tao
,
S.
,
Qin
,
F.
,
Weng
,
W.
,
Wang
,
W.
, and
Liu
,
J.
,
2018
, “
Performance Analysis of an Internally-Cooled Plate Membrane Liquid Desiccant Dehumidifier (IMLDD): An Analytical Solution Approach
,”
Int. J. Heat Mass Transfer
,
119
, pp.
577
585
.
32.
Liu
,
J.
,
Liu
,
X.
, and
Zhang
,
T.
,
2019
, “
Analytical Solution of Heat and Mass Transfer Process in Internally Cooled Liquid Desiccant Dehumidifiers Using Refrigerant as Cooling Medium
,”
Energy Build.
,
190
, pp.
1
14
.
33.
Yin
,
Y.
,
Zhang
,
X.
,
Peng
,
D.
, and
Li
,
X.
,
2009
, “
Model Validation and Case Study on Internally Cooled/Heated Dehumidifier/Regenerator of Liquid Desiccant Systems
,”
Int. J. Therm. Sci.
,
48
(
8
), pp.
1664
1671
.
34.
Liu
,
J.
,
Liu
,
X.
, and
Zhang
,
T.
,
2016
, “
Performance Comparison of Three Typical Types of Internally-Cooled Liquid Desiccant Dehumidifiers
,”
Build. Environ.
,
103
, pp.
134
145
.
35.
Cheng
,
X.
,
Rong
,
Y.
,
Zhou
,
X.
,
Gu
,
C.
,
Zhi
,
X.
,
Qiu
,
L.
,
Yuan
,
Y.
, and
Wang
,
K.
,
2020
, “
Performance Analysis of a Multistage Internal Circulation Liquid Desiccant Dehumidifier
,”
Appl. Therm. Eng.
,
172
, p.
115163
.
36.
Li
,
W.
, and
Yao
,
Y.
,
2021
, “
Thermodynamic Analysis of Internally-Cooled Membrane-Based Liquid Desiccant Dehumidifiers of Different Flow Types
,”
Int. J. Heat Mass Transfer
,
166
, p.
120802
.
37.
Liu
,
J.
,
Liu
,
X.
, and
Zhang
,
T.
,
2018
, “
Performance Comparison and Exergy Analysis of Different Flow Types in Internally-Cooled Liquid Desiccant Dehumidifiers (ICDs)
,”
Appl. Therm. Eng.
,
142
, pp.
278
291
.
38.
Xiao
,
L.
,
Yang
,
M.
,
Yuan
,
W. Z.
, and
Huang
,
S. M.
,
2020
, “
Performance Characteristics of a Novel Internally-Cooled Plate Membrane Liquid Desiccant air Dehumidification System
,”
Appl. Therm. Eng.
,
172
, p.
115193
.
39.
Yang
,
Y.
,
Yang
,
M.
,
Huang
,
W.
,
Huang
,
S. M.
,
Ye
,
W. B.
,
Hong
,
Y.
,
Qin
,
F.
, and
Shao
,
Y.
,
2017
, “
Heat and Mass Transfer in an Adjacent Internally-Cooled Membrane-Based Liquid Desiccant Dehumidifier (AIMLDD)
,”
Energy Procedia
,
142
, pp.
3990
3997
.
40.
Zhou
,
J.
,
Zhang
,
X.
, and
Xiao
,
F.
,
2022
, “
Study on Heat and Mass Transfer Characteristics of Internally-Cooled Hollow Fiber Membrane-Based Liquid Desiccant Dehumidifiers
,”
Appl. Therm. Eng.
,
212
, p.
2022
.
41.
Yu
,
L.
,
Shamim
,
J. A.
,
Hsu
,
W. L.
, and
Daiguji
,
H.
,
2021
, “
Optimization of Parameters for Air Dehumidification Systems Including Multilayer Fixed-Bed Binder-Free Desiccant Dehumidifier
,”
Int. J. Heat Mass Transfer
,
172
, p.
121102
.
42.
Tariq
,
R.
,
Ali
,
M.
,
Sheikh
,
N. A.
,
Shahzad
,
M. W.
, and
Bin Xu
,
B.
,
2023
, “
Deep Learning Artificial Intelligence Framework for Sustainable Desiccant Air Conditioning System: Optimization Towards Reduction in Water Footprints
,”
Int. Commun. Heat Mass Transfer
,
140
, p.
106538
.
43.
Zendehboudi
,
A.
,
Tatar
,
A.
, and
Li
,
X.
,
2017
, “
A Comparative Study and Prediction of the Liquid Desiccant Dehumidifiers Using Intelligent Models
,”
Renewable Energy
,
114
(
B
), pp.
1023
1035
.
44.
Jani
,
D. B.
,
Mishra
,
M.
, and
Sahoo
,
P. K.
,
2016
, “
Performance Prediction of Rotary Solid Desiccant Dehumidifier in Hybrid Air-Conditioning System Using Artificial Neural Network
,”
Appl. Therm. Eng.
,
98
, pp.
1091
1103
.
45.
Parmar
,
H.
, and
Hindoliya
,
D. A.
,
2011
, “
Artificial Neural Network Based Modelling of Desiccant Wheel
,”
Energy Build.
,
43
(
12
), pp.
3505
3513
.
46.
Bhowmik
,
M.
,
Naik
,
B. K.
,
Muthukumar
,
P.
, and
Anandalakshmi
,
R.
,
2023
, “
Performance Assessment and Optimization of Liquid Desiccant Dehumidifier System Using Intelligent Models and Integration with Solar Dryer
,”
J. Build. Eng.
,
64
, p.
105577
.
47.
Zhang
,
X.
,
Xu
,
X.
, and
Zhu
,
Y.
,
2022
, “
An Improved Time Delay Neural Network Model for Predicting Dynamic Heat and Mass Transfer Characteristics of a Packed Liquid Desiccant Dehumidifier
,”
Int. J. Therm. Sci.
,
177
, p.
107548
.
48.
Motaghian
,
S.
,
Rayegan
,
S.
,
Pasdarshahri
,
H.
,
Ahmadi
,
P.
, and
Rosen
,
M. A.
,
2021
, “
Comprehensive Performance Assessment of a Solid Desiccant Wheel Using an Artificial Neural Network Approach
,”
Int. J. Heat Mass Transfer
,
165
(
A
), p.
120657
.
49.
Venegas
,
T.
,
Qu
,
M.
,
Wang
,
L.
,
Liu
,
X.
,
Gluesenkamp
,
K.
, and
Gao
,
Z.
,
2023
, “
Review of Liquid Desiccant Air Dehumidification Systems Coupled With Heat Pump: System Configurations, Component Design, and Performance
,”
Energy Build.
,
279
, p.
112655
.
50.
Gandhidasan
,
P.
, and
Mohandes
,
M. A.
,
2011
, “
Artificial Neural Network Analysis of Liquid Desiccant Dehumidification System
,”
Energy
,
36
(
2
), pp.
1180
1186
.
51.
The MathWorks
, “Levenberg-Marquardt Backpropagation.” https://www.mathworks.com/help/deeplearning/ref/trainlm.html, Accessed July 20, 2023.
52.
Gandhidasan
,
P.
, and
Mohandes
,
M. A.
,
2008
, “
Predictions of Vapor Pressures of Aqueous Desiccants for Cooling Applications by Using Artificial Neural Networks
,”
Appl. Therm. Eng.
,
28
(
2–3
), pp.
126
135
.
You do not currently have access to this content.