Abstract

The electrification of rural communities is crucial from both social and economic perspectives, aligned with Sustainable Development Goal 7: ”Affordable and Clean Energy.” This study presents a comprehensive comparison of clustering techniques, including k-means, Gaussian mixture models (GMM), hierarchical clustering, density-based spatial clustering of applications with noise (DBSCAN), and agglomerative clustering, aimed at enhancing solar irradiance prediction. Leveraging historical climate data from a rural community in the coastal region of Ecuador, each technique is evaluated using error metrics such as mean absolute error (MAE) and coefficient of determination (R2). This assessment identifies the most effective clustering technique in this specific context. In order to delve deeper into these comparisons, simulations are conducted in AMPL to validate and refine the selection of techniques. In this process, it is considered the sizing and design of a microgrid within the Barcelona community, Ecuador, which integrates various energy sources, including solar. Additionally, a penalty system is introduced for unmet energy demands during less critical periods, thereby optimizing efficiency and enhancing energy availability within the community. In conclusion, this article introduces a scalable methodology to analyze algorithms for solar irradiance prediction, emphasizing the significance of comparing clustering techniques as its main contribution. This advancement in prediction accuracy has the potential to enhance the feasibility and efficiency of renewable energy systems for rural communities, thereby fostering sustainable economic growth and bolstering efforts in climate change mitigation and adaptation.

References

1.
Nations
,
U.
,
2021
, “
SDG7 TAG Policy Briefs: Leveraging Energy Action for Advancing the Sustainable Development Goals
,” Progress Report 1,
United Nations, San Francisco, CA
.
2.
Nations
,
U.
,
2023
, “
Sustainable Development Report 2023 Implementing the SDG Stimulus Includes the SDG Index and Dashboards
,” Progress Report 1,
United Nations, San Francisco, CA
.
3.
Ahmed
,
R.
,
Sreeram
,
V.
,
Mishra
,
Y.
, and
Arif
,
M.
,
2020
, “
A Review and Evaluation of the State-of-the-Art in PV Solar Power Forecasting: Techniques and Optimization
,”
Renewable. Sustainable. Energy. Rev.
,
124
, p.
109792
.
4.
Perez-Uresti
,
S. I.
,
Lima
,
R. M.
,
Martin
,
M.
, and
Jimenez-Gutierrez
,
A.
,
2023
, “
On the Design of Renewable-Based Utility Plants Using Time Series Clustering
,”
Comput. Chem. Eng.
,
170
, p.
108124
.
5.
Zhou
,
Y.
,
Liu
,
Y.
,
Wang
,
D.
,
Liu
,
X.
, and
Wang
,
Y.
,
2021
, “
A Review on Global Solar Radiation Prediction With Machine Learning Models in a Comprehensive Perspective
,”
Energy. Convers. Manage.
,
235
, p.
113960
.
6.
Voyant
,
C.
,
Notton
,
G.
,
Kalogirou
,
S.
,
Nivet
,
M.-L.
,
Paoli
,
C.
,
Motte
,
F.
, and
Fouilloy
,
A.
,
2017
, “
Machine Learning Methods for Solar Radiation Forecasting: A Review
,”
Renewable Energy
,
105
, pp.
569
582
.
7.
Teichgraeber
,
H.
, and
Brandt
,
A. R.
,
2022
, “
Time-Series Aggregation for the Optimization of Energy Systems: Goals, Challenges, Approaches, and Opportunities
,”
Renewable. Sustainable. Energy. Rev.
,
157
, p.
111984
.
8.
Gabrielli
,
P.
,
Gazzani
,
M.
,
Martelli
,
E.
, and
Mazzotti
,
M.
,
2018
, “
Optimal Design of Multi-energy Systems With Seasonal Storage
,”
Appl. Energy.
,
219
, pp.
408
424
.
9.
Mallapragada
,
D. S.
,
Papageorgiou
,
D. J.
,
Venkatesh
,
A.
,
Lara
,
C. L.
, and
Grossmann
,
I. E.
,
2018
, “
Impact of Model Resolution on Scenario Outcomes for Electricity Sector System Expansion
,”
Energy
,
163
, pp.
1231
1244
.
10.
Dolara
,
A.
,
Grimaccia
,
F.
,
Magistrati
,
G.
, and
Marchegiani
,
G.
,
2017
, “
Optimization Models for Islanded Micro-grids: A Comparative Analysis Between Linear Programming and Mixed Integer Programming
,”
Energies
,
10
(
2
), p.
241
.
11.
Pesantes
,
L. A.
,
Hidalgo-León
,
R.
,
Rengifo
,
J.
,
Torres
,
M.
,
Aragundi
,
J.
,
Cordova-Garcia
,
J.
, and
Ugarte
,
L. F.
,
2024
, “
Optimal Design of Hybrid Microgrid in Isolated Communities of Ecuador
,”
J. Modern Power Syst. Clean Energy
,
12
(
2
), pp.
488
499
.
12.
CNEL EP
,
2023
, “Indicadores de Calidad de Servicio Técnico,” Progress Report 1,
Empresa Eléctrica Pública Estratégica Corporación Nacional de Electricidad
,
Ecuador, EC
.
13.
EPC
,
2023
, “Indicadores de Calidad de Servicio Técnico,” Progress Report 1,
Programación de Corte del Servicio de Energía Eléctrica
,
Ecuador, EC
.
14.
Mundial
,
B.
,
2024
, “Crecimiento de la población (% anual) - Ecuador | Data,” Progress Report 1,
Banco Mundial
,
Ecuador, EC
.
15.
National Aeronautics and Space Administration
,
2024
, “Prediction of Worldwide Energy Resources,” Progress Report 1,
NASA
,
Ecuador, EC
.
16.
Sinaga
,
K. P.
, and
Yang
,
M. -S.
,
2020
, “
Unsupervised K-Means Clustering Algorithm
,”
IEEE Access
,
8
, pp.
80716
80727
.
17.
Ikotun
,
A. M.
,
Ezugwu
,
A. E.
,
Abualigah
,
L.
,
Abuhaija
,
B.
, and
Heming
,
J.
,
2023
, “
K-Means Clustering Algorithms: A Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data
,”
Inf. Sci.
,
622
, pp.
178
210
.
18.
Liu
,
F.
, and
Deng
,
Y.
,
2020
, “
Determine the Number of Unknown Targets in Open World Based on Elbow Method
,”
IEEE Trans. Fuzzy Syst.
,
29
(
5
), pp.
986
995
.
19.
Yang
,
X.
,
Li
,
Y.
,
Zhao
,
Y.
,
Li
,
Y.
,
Hao
,
G.
, and
Wang
,
Y.
,
2024
, “
Gaussian Mixture Model Uncertainty Modeling for Power Systems Considering Mutual Assistance of Latent Variables
,”
IEEE Trans. Sustainable Energy
,
0
, pp.
1
4
.
20.
Ke
,
X.
,
Zhao
,
Y.
, and
Huang
,
L.
,
2021
, “
On Accurate Source Enumeration: A New Bayesian Information Criterion
,”
IEEE Trans. Signal Process.
,
69
, pp.
1012
1027
.
21.
Patel
,
E.
, and
Kushwaha
,
D. S.
,
2020
, “
Clustering Cloud Workloads: K-Means vs Gaussian Mixture Model
,”
Procedia Comput. Sci.
,
171
, pp.
158
167
.
22.
Goudarzi
,
N.
, and
Ziaei
,
D.
,
2022
, “
Wind Farm Clustering Methods for Power Forecasting
,”
ASME Power Conference, Vol. 85826
,
Pittsburgh, PA
,
July 18–19
,
American Society of Mechanical Engineers
, p.
V001T07A015
.
23.
Govender
,
P.
, and
Sivakumar
,
V.
,
2020
, “
Application of K-Means and Hierarchical Clustering Techniques for Analysis of Air Pollution: A Review (1980–2019)
,”
Atmos. Pollut. Res.
,
11
(
1
), pp.
40
56
.
24.
Tokuda
,
E. K.
,
Comin
,
C. H.
, and
Costa
,
L. d. F.
,
2022
, “
Revisiting Agglomerative Clustering
,”
Physica A: Stat. Mech. Appl.
,
585
, p.
126433
.
25.
Najian
,
M.
, and
Goudarzi
,
N.
,
2023
, “
Evaluating Critical Weather Parameters Using Machine Learning Models
,”
ASME Power Conference, Vol. 87172
,
Long Beach, CA
,
Aug. 6–8
,
American Society of Mechanical Engineers
, p.
V001T04A006
.
26.
Turney
,
S.
,
2022
, “
Coefficient of Determination (R2)| Calculation & Interpretation
,”
Scribbr
, https://www.scribbr.com/statistics/coefficient-of-determination/, Accessed December 13, 2022.
27.
Fourer
,
R.
,
Gay
,
D. M.
, and
Kernighan
,
B. W.
,
1995
,
Ampl
,
Boyd & Fraser Danvers
,
MA
.
28.
Mahdavi
,
M.
,
Alhelou
,
H. H.
,
Hatziargyriou
,
N. D.
, and
Al-Hinai
,
A.
,
2021
, “
An Efficient Mathematical Model for Distribution System Reconfiguration Using Ampl
,”
IEEE Access
,
9
, pp.
79961
79993
.
29.
Sioshansi
,
R.
, and
Conejo
,
A.
,
2019
,
Optimization in Engineering: Models and Algorithms
,
Springer
, London.
30.
AMPL
, “
CPLEX IBM ILOG CPLEX Solver
,” https://documentation.aimms.com, Accessed January 20, 2023.
31.
Olszak
,
A.
, and
Karbowski
,
A.
,
2018
, “
Parampl: A Simple Tool for Parallel and Distributed Execution of AMPL Programs
,”
IEEE Access
,
6
, pp.
49282
49291
.
You do not currently have access to this content.