Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Waste heat recovered from a refrigeration machine is associated with the double benefit of generating cold and heat with just one unit. Additional energy is required in most cases to achieve these benefits. To evaluate the efficiency of waste heat recovery, two novel efficiency indicators are described. The overhead coefficient of performance (OCOP) describes additional electrical power required to raise the temperature to make waste heat usable. The coefficient of savings describes power reduction when condenser heat is fed into a cold district heating network instead of exhausting it to high-temperature outside air. Results are reported from a case study in a food logistic center with high cooling demand in Isny, Germany. Waste heat at this facility was previously released unused to outside air. We describe how this waste heat can be used to supply sustainable heat supply to a new residential area. During the design phase, it is difficult to choose the best operating temperature for district heating networks (DHNs). The novel indicators are used to value the effort to make waste heat usable. Whereas a supply temperature of 20 °C has no disadvantages for the operator, a supply temperature of 40 °C is associated with an increase in electricity consumption. The resulting OCOPs are above 5.0 even under unfavorable conditions and exceed the theoretically calculated (Holm and Pehnt, 2023, Wärmeschutz und Wärmepumpe-Warum Beides Zusammengehört, Forschungsinstitut für Wärmeschutz e.V., Institut für Energie und Umweltforschung, München/Berlin/Heidelberg, p, 13, 14; Agora Energiewende, Fraunhofer IEG, 2023, Roll-out von Großwärmepumpen in Deutschland, Strategien für den Markthochlauf in Wärmenetzen und Industrie, Berlin) and measured (Fraunhofer Institut für Solare Energiesysteme, 2020, “Wärmepumpen in Bestandsgebäuden, Ergebnisse aus dem Forschungsprojekt, WP-Smart im Bestand.”) coefficients of performance (COPs) for air-sourced heat pumps. Although using waste heat is not free, it is beneficial when overall efficiency is considered.

References

1.
Brandes
,
J.
,
Haun
,
M.
,
Wrede
,
D.
,
Jürgens
,
P.
,
Kost
,
C.
, and
Henning
,
H. M.
,
2021
,
Wege zu Einem Klimaneutralen Energiesystem
, Fraunhofer-Institut für Solare Energiesysteme, Freiburg.
2.
Auswertungstabellen zur Energiebilanz Deutschland
,
2021
, “Daten für die Jahre von 1990 bis 2020,” https://agenergiebilanzen.de/wp-content/uploads/2023/10/awt_2022_deutsch.pdf, Accessed August 3, 2024.
3.
IRENA and Aalborg University
,
2021
,
Integrating Low-Temperature Renewables in District Energy Systems: Guidelines for Policy Makers
, International Renewable Energy Agency, Aalborg University, Abu Dhabi, Copenhagen.
4.
Floss
,
A.
,
Hilbe
,
F.
,
2021
, “Brennwertnutzen bei der Holzverbrennung,” Science.Research.Pannonia, Green Deal, Energie – Gebäude – Umwelt, Fachhochschule Burgenland Band 25, pp.
105
112
.
5.
Zepf
,
K.
,
Richter
,
S.
,
Ziegler
,
R.
,
Zieher
,
M.
,
Floß
,
A.
,
2012
, “
Energetische Optimierung der Fernwärme Ulm
,” Forschungsvorhaben Fernwärmemodellstadt Ulm, Bundesministerium für Wirtschaft und Technologie.
6.
Buffa
,
S.
,
Cozzini
,
M.
,
D’antoni
,
M.
,
Baratieri
,
M.
, and
Fedrizzi
,
R.
,
2019
, “
5th Generation District Heating and Cooling Systems: A Review of Existing Cases in Europe
,”
Renewable Sustainable Energy Rev.
,
104
, pp.
504
522
.
7.
Ruesch
,
F.
, and
Haller
,
M.
,
2017
, “
Potential and Limitations of Using Low-Temperature District Heating and Cooling Networks for Direct Cooling of Buildings
,”
Energy Procedia
,
122
, pp.
1099
1104
.
8.
Vetterli
,
N.
,
Sulzer
,
N.
, and
Menti
,
U. P.
,
2017
, “
Energy Monitoring of a Low Temperature Heating and Cooling District Network
,”
Energy Procedia
,
122
, pp.
62
67
.
9.
Bünning
,
F.
,
Wetter
,
M.
,
Fuchs
,
M.
, and
Müller
,
D.
,
2018
, “
Bidirectional Low Temperature District Energy Systems With Agent-Based Control: Performance Comparison and Operation Optimization
,”
Appl. Energy
,
209
, pp.
502
515
.
10.
Ruesch
,
F.
,
Rommel
,
M.
, and
Scherer
,
J.
,
2015
, “
Pumping Power Prediction in Low Temperature District Heating Networks
,”
Proceedings of International Conference CISBAT 2015, LESO-PB, EPFL
,
Lausanne, Switzerland
,
Sept. 9–11
, pp.
753
758
.
11.
Pellegrini
,
M.
, and
Bianchini
,
A.
,
2018
, “
The Innovative Concept of Cold District Heating Networks: A Literature Review
,”
Energies
,
11
(
1
), pp.
236
.
12.
Stübler
,
A.
,
Bestenlehner
,
D.
, and
Drück
,
H.
,
2014
, “
Energy Saving Potentials of Cold District Heating Networks
,”
Proceedings of the 17th EWA Symposium During IFAT 2014
,
Munich, Germany
,
May 6.–7
.
13.
Ruesch
,
F.
,
Scherer
,
J.
, and
Kolb
,
M.
,
2016
, “
Erdreich als Speicher-Grosse Anergienetze
,”
Internationale Konferenz zur Simulation Gebäudetechnischer Energiesysteme
,
Winterthur, Switzerland
,
September
.
14.
Gautschi
,
T.
,
2015
,
Energiekonzept Anergienetz Hönggerberg
,
ETH Zürich, Infrastrukturbereich Immobilien
,
Zürich
.
15.
Arpagaus
,
C.
,
2018
,
Hochtemperatur-Waermepumpen
,
VDE Verlag GmbH
,
Berlin
.
16.
Bitzer Kühlmaschinenbau GmbH
,
2020
, “Bitzer Software, Version 6.16.0.”
17.
Holm
,
A.
, and
Pehnt
,
M.
,
2023
,
Wärmeschutz und Wärmepumpe-Warum Beides Zusammengehört
,
Forschungsinstitut für Wärmeschutz e.V., Institut für Energie und Umweltforschung
,
München/Berlin/Heidelberg
, p,
13, 14
.
18.
Agora Energiewende, Fraunhofer IEG
,
2023
,
Roll-out von Großwärmepumpen in Deutschland
, Strategien für den Markthochlauf in Wärmenetzen und Industrie, Berlin.
19.
Fraunhofer Institut für Solare Energiesysteme
,
2020
, “Wärmepumpen in Bestandsgebäuden, Ergebnisse aus dem Forschungsprojekt, WP-Smart im Bestand.”
20.
DIN V 18599-1:2018-09
, “Energetische Bewertung von Gebäuden-Berechnung des Nutz-, End- und Primärenergiebedarfs für Heizung, Kühlung, Trinkwarmwasser und Beleuchung, Teil 1: Allgemeine Bilanzierungsverfahren, Begriffe, Zonierung und Bewertung der Energieträger.”
21.
SIMAKA GmbH
,
2009
, “
Planungsanleitung Simatron Wärmepumpen, Art.Nr-WP005/1 WW, 08/2009
.”
You do not currently have access to this content.