Abstract

Initially designed for electronic system cooling, microchannels represent innovative technologies that can also be harnessed to augment the thermal resistance of building walls. When employed as an additional insulation layer within the building envelope, they have the potential to replace traditional insulating materials like wool, polystyrene, wood fiber, and cotton denim. This article explores modeling and simulation results pertaining to the performance of microchannels integrated into a standard building wall, aiming to provide dynamic thermal resistance for the building envelope. The simulations were conducted using aluminum microchannels featuring a rectangular profile, and various working fluids (air and water) were considered to assess system performance under different fluid conditions. To ensure laminar flow conditions in both working fluids, the Reynolds number was controlled within the range of 100–900 across multiple runs. The simulation and analysis outcomes underscore the viability of fluid flow through microchannels within building walls as a promising insulation technique capable of delivering dynamic thermal resistance and enhancing energy efficiency across diverse building types. Furthermore, the results emphasize that the utilization of water-based fluid within microchannels outperforms air-based fluid flow, particularly in terms of heat transfer and heat dissipation capabilities.

References

1.
Bayrak
,
E.
,
Olcay
,
A. B.
, and
Serincan
,
M. F.
,
2019
, “
Numerical Investigation of the Effects of Geometric Structure of Microchannel Heat Sink on Flow Characteristics and Heat Transfer Performance
,”
Int. J. Therm. Sci.
,
135
, pp.
589
600
.
2.
Chai
,
L.
,
Xia
,
G.
,
Wang
,
L.
,
Zhou
,
M.
, and
Cui
,
Z.
,
2013
, “
Heat Transfer Enhancement in Microchannel Heat Sinks With Periodic Expansion–Constriction Cross-Sections
,”
Int. J. Heat Mass Transf.
,
62
, pp.
741
751
.
3.
Azari
,
R.
,
2014
, “
Integrated Energy and Environmental Life Cycle Assessment of Office Building Envelopes
,”
Energy Build.
82
, pp.
156
162
.
4.
Batouli
,
S. M.
,
Zhu
,
Y.
,
Nar
,
M.
, and
D'Souza
,
M. A.
,
2014
, “
Environmental Performance of Kenaf-Fiber Reinforced Polyurethane: A Life Cycle Assessment Approach
,”
J. Clean. Prod.
66
, pp.
164
173
.
5.
Byrne
,
A.
,
Byrne
,
G.
,
O’Donnell
,
G.
, and
Robinson
,
A.
,
2016
, “
Case Studies of Cavity and External Wall Insulation Retrofitted Under the Irish Home Energy Saving Scheme: Technical Analysis and Occupant Perspectives
,”
Energy Build.
,
130
, pp.
420
433
.
6.
Smith
,
V. H.
,
Tilman
,
G. D.
, and
Nekola
,
J. C.
,
1999
, “
Eutrophication: Impacts of Excess Nutrient Inputs on Freshwater, Marine, and Terrestrial Ecosystems
,”
Environ. Pollut.
100
(
1–3
), pp.
179
196
.
7.
Friess
,
W. A.
,
Rakhshan
,
K.
,
Hendawi
,
T. A.
, and
Tajerzadeh
,
S.
,
2012
, “
Wall Insulation Measures for Residential Villas in Dubai: A Case Study in Energy Efficiency
,”
Energy Build.
,
44
, pp.
26
32
.
8.
Meng
,
X.
,
Luo
,
T.
,
Gao
,
Y.
,
Zhang
,
L.
,
Huang
,
X.
,
Hou
,
C.
,
Shen
,
Q.
, and
Long
,
E.
,
2018
, “
Comparative Analysis on Thermal Performance of Different Wall Insulation Forms Under the Air-Conditioning Intermittent Operation in Summer
,”
Appl. Therm. Eng.
,
130
, pp.
429
438
.
9.
Rosenow
,
J.
,
Platt
,
R.
, and
Demurtas
,
A.
,
2014
, “
Fiscal Impacts of Energy Efficiency Programmes—The Example of Solid Wall Insulation Investment in the UK
,”
Energy Policy
,
74
, pp.
610
620
.
10.
Chai
,
L.
,
Xia
,
G. D.
, and
Wang
,
H. S.
,
2016
, “
Numerical Study of Laminar Flow and Heat Transfer in Microchannel Heat Sink With Offset Ribs on Sidewalls
,”
Appl. Therm. Eng.
,
92
, pp.
32
41
.
11.
Tink
,
V.
,
Porritt
,
S.
,
Allinson
,
D.
, and
Loveday
,
D.
,
2018
, “
Measuring and Mitigating Overheating Risk in Solid Wall Dwellings Retrofitted With Internal Wall Insulation
,”
Build. Environ.
,
141
, pp.
247
261
.
12.
Xu
,
C.
,
Li
,
S.
, and
Zou
,
K.
,
2019
, “
Study of Heat and Moisture Transfer in Internal and External Wall Insulation Configurations
,”
J. Build. Eng.
,
24
, p.
100724
.
13.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
14.
Khan
,
H.
,
Li
,
Y.
,
Khan
,
A.
, and
Khan
,
A.
,
2019
, “
Existence of Solution for a Fractional-Order Lotka-Volterra Reaction-Diffusion Model With Mittag-Leffler Kernel
,”
Math. Methods Appl. Sci.
,
42
(
9
), pp.
3377
3387
.
15.
Li
,
J.
, and
Peterson
,
G. P.
,
2007
, “
3-Dimensional Numerical Optimization of Silicon-Based High Performance Parallel Microchannel Heat Sink With Liquid Flow
,”
Int. J. Heat Mass Transf.
,
50
(
15
), pp.
2895
2904
.
16.
Kumar, P.,
2019
, “
Numerical Investigation of Fluid Flow and Heat Transfer in Trapezoidal Microchannel with Groove Structure
,”
Int. J. Ther. Sci.
136
, pp.
33
43
.
17.
Alfaryjat
,
A. A.
,
Mohammed
,
H. A.
,
Adam
,
N. M.
,
Ariffin
,
M. K. A.
, and
Najafabadi
,
M. I.
,
2014
, “
Influence of Geometrical Parameters of Hexagonal, Circular, and Rhombus Microchannel Heat Sinks on the Thermohydraulic Characteristics
,”
Int. Commun. Heat Mass Transf.
,
52
, pp.
121
131
.
18.
Chen
,
Y.
,
Fu
,
P.
,
Zhang
,
C.
, and
Shi
,
M.
,
2010
, “
Numerical Simulation of Laminar Heat Transfer in Microchannels With Rough Surfaces Characterized by Fractal Cantor Structures
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
622
629
.
19.
Li
,
Y.
,
Zhang
,
F.
,
Sunden
,
B.
, and
Xie
,
G.
,
2014
, “
Laminar Thermal Performance of Microchannel Heat Sinks With Constructal Vertical Y-Shaped Bifurcation Plates
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
185
195
.
20.
Owhaib
,
W.
, and
Palm
,
B.
,
2004
, “
Experimental Investigation of Single-Phase Convective Heat Transfer in Circular Microchannels
,”
Exp. Therm. Fluid. Sci.
,
28
(
2
), pp.
105
110
.
21.
Shi
,
X.
,
Li
,
S.
,
Mu
,
Y.
, and
Yin
,
B.
,
2019
, “
Geometry Parameters Optimization for a Microchannel Heat Sink With Secondary Flow Channel
,”
Int. Commun. Heat Mass Transf.
,
104
, pp.
89
100
.
22.
Sidik
,
N. A. C.
,
Muhamad
,
M. N. A. W.
,
Japar
,
W. M. A. A.
, and
Rasid
,
Z. A.
,
2017
, “
An Overview of Passive Techniques for Heat Transfer Augmentation in Microchannel Heat Sink
,”
Int. Commun. Heat Mass Transf.
,
88
, pp.
74
83
.
23.
Wang
,
G.
,
Niu
,
D.
,
Xie
,
F.
,
Wang
,
Y.
,
Zhao
,
X.
, and
Ding
,
G.
,
2015
, “
Experimental and Numerical Investigation of a Microchannel Heat Sink (MCHS) With Micro-Scale Ribs and Grooves for Chip Cooling
,”
Appl. Therm. Eng.
,
85
, pp.
61
70
.
24.
Zhai
,
Y. L.
,
Xia
,
G. D.
,
Liu
,
X. F.
, and
Li
,
Y. F.
,
2014
, “
Heat Transfer in the Microchannels With Fan-Shaped Reentrant Cavities and Different Ribs Based on Field Synergy Principle and Entropy Generation Analysis
,”
Int. J. Heat Mass Transf.
,
68
, pp.
224
233
.
25.
Zhu
,
Q.
,
Chang
,
K.
,
Chen
,
J.
,
Zhang
,
X.
,
Xia
,
H.
,
Zhang
,
H.
,
Wang
,
H.
,
Li
,
H.
, and
Jin
,
Y.
,
2020
, “
Characteristics of Heat Transfer and Fluid Flow in Microchannel Heat Sinks with Rectangular Grooves and Different Shaped Ribs
,”
Alex. Eng. J.
59
(
6
), pp.
4593
4609
.
26.
Ghani
,
I. A.
,
Kamaruzaman
,
N.
, and
Sidik
,
N. A. C.
,
2017
, “
Heat Transfer Augmentation in a Microchannel Heat Sink With Sinusoidal Cavities and Rectangular Ribs
,”
Int. J. Heat Mass Transf.
,
108
, pp.
1969
1981
.
27.
Wen
,
H.
,
Liang
,
Z.
,
Luo
,
Q.
,
Wu
,
C.
, and
Wang
,
C.
,
2023
, “
Heat Transfer Performance Study of Microchannel Heat Sink With Composite Secondary Channels
,”
Int. Comm. Heat Mass Transf.
,
143
, p.
106718
.
28.
Moon
,
J.
,
Pacheco
,
J. R.
, and
Pacheco-Vega
,
A.
,
2019
, “
Heat Transfer Enhancement in Wavy Micro-Channels: Effect of Block Material
,” presented at the
Proceedings of the 4th World Congress on Momentum, Heat and Mass Transfer
,
2019
.
29.
Fawaier
,
M.
, and
Bokor
,
B.
,
2022
, “
Dynamic Insulation Systems of Building Envelopes: A Review
,”
Energy Build.
,
270
(
4–6
): p.
112268
.
30.
Cui
,
S.
,
Odukomaiya
,
A.
, and
Vidal
,
S.
,
2022
, “
Materials Research and Development Needs to Enable Efficient and Electrified Buildings
,”
MRS Bull
.
46
(
12
), pp.
1176
1186
.
31.
Gao
,
J.
,
Hu
,
Z.
,
Yang
,
Q.
,
Liang
,
X.
, and
Wu
,
H.
,
2022
, “
Fluid Flow and Heat Transfer in Microchannel Heat Sinks: Modelling Review and Recent Progress
,”
Therm. Sci. Eng. Prog
. 29(2): p.
101203
.
32.
Mandev
,
E.
, and
Manay
,
E.
,
2022
, “
Effects of Surface Roughness in Multiple Microchannels on Mixed Convective Heat Transfer
,”
Appl. Therm. Eng
.
217
: p.
119102
.
33.
Xing
,
Y.
,
Zhi
,
T.
,
Haiwang
,
L.
, and
Yitu
,
T.
,
2016
, “
Experimental Investigation of Surface Roughness Effects on Flow Behavior and Heat Transfer Characteristics for Circular Microchannels
,”
Chin. J. Aeronaut
.
29
(
6
): pp.
1575
1581
.
34.
Li
,
P.
,
Zhang
,
D.
,
Xie
,
Y.
, and
Xie
,
G.
,
2016
, “
Flow Structure and Heat Transfer of Non-Newtonian Fluids in Microchannel Heat Sinks With Dimples and Protrusions
,”
Appl. Therm. Eng.
,
94
, pp.
50
58
.
35.
Xu
,
H. J.
,
Xing
,
Z. B.
,
Wang
,
F. Q.
, and
Cheng
,
Z. M.
,
2019
, “
Review on Heat Conduction, Heat Convection, Thermal Radiation and Phase Change Heat Transfer of Nanofluids in Porous Media: Fundamentals and Applications
,”
Chem. Eng. Sci.
,
195
, pp.
462
483
.
36.
Guo
,
Z. Y.
,
Li
,
D. Y.
, and
Wang
,
B. X.
,
1998
, “
A Novel Concept for Convective Heat Transfer Enhancement
,”
Int. J. Heat Mass Transf.
,
41
(
14
), pp.
2221
2225
.
37.
Wang
,
C.-H.
,
Feng
,
Y.-Y.
,
Yue
,
K.
, and
Zhang
,
X.-X.
,
2019
, “
Discontinuous Finite Element Method for Combined Radiation-Conduction Heat Transfer in Participating Media
,”
Int. Commun. Heat Mass Transf.
,
108
, p.
104287
.
38.
Hadjiconstantinou
,
N. G.
, and
Simek
,
O.
,
2002
, “
Constant-Wall-Temperature Nusselt Number in Micro and Nano-Channels
,”
ASME J. Heat Transf.-Trans ASME
,
124
(
2
), pp.
356
364
.
39.
Guo
,
Z.
, and
Sung
,
H. J.
,
1997
, “
Analysis of the Nusselt Number in Pulsating Pipe Flow
,”
Int. J. Heat Mass Transf.
,
40
(
10
), pp.
2486
2489
.
40.
Kerr
,
R. M.
, and
Herring
,
J. R.
,
2000
, “
Prandtl Number Dependence of Nusselt Number in Direct Numerical Simulations
,”
J. Fluid Mech.
,
419
, pp.
325
344
.
41.
Tian
,
X.
,
Yang
,
J.
,
Guo
,
Z.
,
Wang
,
Q.
, and
Sunden
,
B.
,
2020
. “
Numerical Study of Heat Transfer in Gravity-Driven Dense Particle Flow Around a Hexagonal Tube
,”
Powder Tech
.,
367
: pp.
285
295
.
42.
Pongsoi
,
P.
,
Pikulkajorn
,
S.
,
Wang
,
C.-C.
, and
Wongwises
,
S.
,
2012
, “
Effect of Number of Tube Rows on the Air-Side Performance of Crimped Spiral Fin-and-Tube Heat Exchanger With a Multipass Parallel and Counter Cross-Flow Configuration
,”
Int. J. Heat Mass Transf.
,
55
(
4
), pp.
1403
1411
.
You do not currently have access to this content.