Abstract

In the pharmaceutical industry (PMI), the major portion of energy is consumed in heat ventilation air conditioning (HVAC) system; therefore, building energy management systems (BEMS) primarily focus on optimizing the energy consumption in HVAC systems. The two operation modes of HVAC, function mode (FM) and non-function mode (NFM), are descriptively explained with their role in improving the flexibility of demanded energy. Both modes are also exposed to hybrid optimization of multiple electric renewables (HOMER) software analysis from an economic perspective. Concerning net present cost (NPC) and cost of energy (COE) constraints, the FM/NFM of HVAC is preferable to the FM. This paper recognizes a comparative evaluation of several demand response (DR) alliances to deliver a comprehensive image of the suitability of DR alliances for different PMIs. Further, the paper also explores an innovative concept in the form of a control algorithm and discusses the relevant challenges and future opportunities. Moreover, the use of renewable energy systems (RESs) for enhancing energy management (EM) flexibility with the economy in the PMI or other industries is emphasized through DR alliances. This review study could be helpful to the PMI in terms of managing energy demand and also incorporating DR as an essential aspect of EM.

References

1.
Backbone of Indian Economy in the Current Pandemic Indian Pharma Industry
,” https://www.expresspharma.in.
2.
Sahay
,
A.
, “
India Can Become the Pharmacy of the World
,” [Online], https://www.thehindubusinessline.com/portfolio/technical-analysis/nifty-
3.
Tiewsoh
,
L. S.
,
Jirásek
,
J.
, and
Sivek
,
M.
,
2019
, “
Electricity Generation in India: Present State, Future Outlook and Policy Implications
,”
Energies (Basel)
,
12
(
7
), p.
1361
.
4.
Durrant
,
C.
,
2001
, “
The Responsibility of the Pharmaceutical Industry
,”
Clin. Microbiol. Infect.
,
7
(
6
), pp.
2
4
.
5.
Bignami
,
F.
,
Mattsson
,
P.
, and
Hoekman
,
J.
,
2020
, “
The Importance of Geographical Distance to Different Types of R&D Collaboration in the Pharmaceutical Industry
,”
Ind. Innov.
,
27
(
5
), pp.
513
537
.
6.
Troup
,
G. M.
, and
Georgakis
,
C.
,
2013
, “
Process Systems Engineering Tools in the Pharmaceutical Industry
,”
Comput. Chem. Eng.
,
51
, pp.
157
171
.
7.
Gamez-Diaz
,
A.
,
Fernandez
,
P.
,
Ruiz-Cortés
,
A.
,
Molina
,
P. J.
,
Kolekar
,
N.
,
Bhogill
,
P.
,
Mohaan
,
M.
,
Méndez
,
F.
, et al.
,
2019
, “
The Role of Limitations and SLAs in the API Industry
,”
ESEC/FSE 2019—Proceedings of the 2019 27th ACM Joint Meeting European Software Engineering Conference and Symposium on the Foundations of Software Engineering
,
Tallinn, Estonia
,
Aug. 26–30
, Association for Computing Machinery, Inc., pp.
1006
1014
.
8.
Tadros
,
T. F.
,
2018
,
Basic Principles of Formulation Types
, Vol. 2,
De Gruyter
.
9.
Ali
,
S.
,
2018
, “
Indian Electricity Demand How Much, by Whom, and Under What Conditions?
10.
Afroz
,
Z.
,
Shafiullah
,
G. M.
,
Urmee
,
T.
, and
Higgins
,
G.
,
2018
, “
Modeling Techniques Used in Building HVAC Control Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
83
(
21
), pp.
64
84
.
11.
Trčka
,
M.
, and
Hensen
,
J. L. M.
,
2010
, “
Overview of HVAC System Simulation
,”
Autom. Constr.
,
19
(
2
), pp.
93
99
.
12.
Heavlin
,
W. D.
,
Radovanović
,
A.
,
Gupta
,
V.
, and
You
,
S.
,
2018
, “
Risk-Aware Demand Management of Aggregators Participating in Energy Programs with Utilities
,”
Energy Market Responsive Grid
,
162
, pp.
439
460
.
13.
Afram
,
A.
, and
Janabi-Sharifi
,
F.
,
2014
, “
Review of Modeling Methods for HVAC Systems
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
507
519
.
14.
Chakrabortty
,
A.
, and
Ilić
,
M. D.
,
2012
,
Control and Optimization Methods for Electric Smart Grids
,
Springer
,
New York
.
15.
Yang
,
C.
,
Létourneau
,
S.
, and
Guo
,
H.
,
2014
, “
LNAI 8481–Developing Data-Driven Models to Predict BEMS Energy Consumption for Demand Response Systems
,”
IEA/AIE 2014, Part-I
, Springer, pp.
188
197
.
16.
Mathieu
,
J. L.
,
Kamgarpour
,
M.
,
Lygeros
,
J.
,
Andersson
,
G.
, and
Callaway
,
D. S.
,
2015
, “
Arbitraging Intraday Wholesale Energy Market Prices With Aggregations of Thermostatic Loads
,”
IEEE Trans. Power Syst.
,
30
(
2
), pp.
763
772
.
17.
Chen
,
Y.
,
Xu
,
P.
,
Gu
,
J.
,
Schmidt
,
F.
, and
Li
,
W.
,
2018
, “
Measures to Improve Energy Demand Flexibility in Buildings for Demand Response (DR): A Review
,”
Energy Build.
,
177
(
8
), pp.
125
139
.
18.
Zhang
,
W.
,
Lian
,
J.
,
Chang
,
C. Y.
, and
Kalsi
,
K.
,
2013
, “
Aggregated Modeling and Control of Air Conditioning Loads for Demand Response
,”
IEEE Trans. Power Syst.
,
28
(
4
), pp.
4655
4664
.
19.
Davarzani
,
S.
,
Pisica
,
I.
,
Taylor
,
G. A.
, and
Munisami
,
K. J.
,
2021
, “
Residential Demand Response Strategies and Applications in Active Distribution Network Management
,”
Renewable Sustainable Energy Rev.
,
138
, p.
110567
.
20.
Kopp
,
S
,
2017
, “
Guidelines on 2 Heating, Ventilation and Air-Conditioning Systems for Non-Sterile Pharmaceutical
,”
Working document QAS/15.639/Rev.2
.
21.
Seyam
,
S.
,
2018
, “Types of HVAC Systems,”
HVAC System
,
InTech
.
22.
Bruton
,
K.
,
Coakley
,
D.
,
Raftery
,
P.
,
Cusack
,
D. O.
,
Keane
,
M. M.
, and
O’Sullivan
,
D. T. J.
,
2015
, “
Comparative Analysis of the AHU InFO Fault Detection and Diagnostic Expert Tool for AHUs with APAR
,”
Energy Effic
,
8
(
2
), pp.
299
322
.
23.
Deshmukh
,
S.
,
Glicksman
,
L.
, and
Norford
,
L.
,
2020
, “
Case Study Results: Fault Detection in Air-Handling Units in Buildings
,”
Adv. Build. Energy Res.
,
14
(
3
), pp.
305
321
.
24.
Cao
,
Y.
,
Du
,
J.
, and
Soleymanzadeh
,
E.
,
2019
, “
Model Predictive Control of Commercial Buildings in Demand Response Programs in the Presence of Thermal Storage
,”
J. Cleaner Prod.
,
218
(
4
), pp.
315
327
.
25.
Cui
,
H.
, and
Zhou
,
K.
,
2018
, “
Industrial Power Load Scheduling Considering Demand Response
,”
J. Cleaner Prod.
,
204
(
18
), pp.
447
460
.
26.
SBA/BA
, “
Air Handling Units, System Air 2019
.”
27.
2019
, “
Smart Cleanroom: the innovative solution to reduce HVAC energy consumption in classified areas
,” By Ana Fernández, CRS Pharmaceutical Technology Manager, and Xavier Barrera, CRS Electricity & Control Manager, respectively, at Telstar. https://www.telstar.com.
28.
Akram
,
F.
,
Asghar
,
F.
,
Majeed
,
M. A.
,
Amjad
,
W.
,
Manzoor
,
M. O.
, and
Munir
,
A.
,
2020
, “
Techno-Economic Optimization Analysis of Stand-Alone Renewable Energy System for Remote Areas
,”
Sustain. Energy Technol. Assess.
,
38
, p.
100673
.
29.
Kumar
,
P. P.
, and
Saini
,
R. P.
,
2020
, “
Optimization of an Off-Grid Integrated Hybrid Renewable Energy System With Different Battery Technologies for Rural Electrification in India
,”
J. Energy Storage
,
32
, p.
101912
.
30.
Land-Based Wind Market Report: 2021 Edition
,” http://www.osti.gov.
31.
Solar Energy Cost per kw by Country—Lowest Solar Energy Cost in India
,” (electronicsandyou.com).
32.
Jaganath
,
M. M.
,
Ray
,
S.
, and
Dev Choudhury
,
N. B.
,
2022
, “
Techno-Enviro-Economic Optimization of Renewable Energy Potential in North Eastern India
,”
Int. J. Ambient Energy
,
43
(
1
), pp.
8279
8297
.
33.
Krishan
,
O.
, and
Suhag
,
S.
,
2020
, “
Grid-Independent PV System Hybridization With Fuel Cell-Battery/Supercapacitor: Optimum Sizing and Comparative Techno-Economic Analysis
,”
Sustain. Energy Technol. Assess.
,
37
, p.
100625
.
34.
Chauhan
,
A.
, and
Saini
,
R. P.
,
2016
, “
Techno-Economic Optimization Based Approach for Energy Management of a Stand-Alone Integrated Renewable Energy System for Remote Areas of India
,”
Energy
,
94
, pp.
138
156
.
35.
Ghenai
,
C.
,
Salameh
,
T.
, and
Merabet
,
A.
,
2020
, “
Technico-Economic Analysis of Off Grid Solar PV/Fuel Cell Energy System for Residential Community in Desert Region
,”
Int. J. Hydrogen Energy
,
45
(
20
), pp.
11460
11470
.
36.
JERC Revises Power Tariff In J&K
,” Effective from Oct 1, https://kashmirobserver.net.
37.
Qiu
,
Y.
,
Kirkeide
,
L.
, and
Wang
,
Y. D.
,
2018
, “
Effects of Voluntary Time-of-Use Pricing on Summer Electricity Usage of Business Customers
,”
Environ. Resour. Econ.
,
69
(
2
), pp.
417
440
.
38.
Lu
,
X.
,
Li
,
K.
,
Xu
,
H.
,
Wang
,
F.
,
Zhou
,
Z.
, and
Zhang
,
Y.
,
2020
, “
Fundamentals and Business Model for Resource Aggregator of Demand Response in Electricity Markets
,”
Energy
,
204
, p.
117885
.
39.
Haider
,
H. T.
,
See
,
O. H.
, and
Elmenreich
,
W.
,
2016
, “
A Review of Residential Demand Response of Smart Grid
,”
Renewable Sustainable Energy Rev.
,
59
, pp.
166
178
.
40.
Jordehi
,
A. R.
,
2019
, “
Optimisation of Demand Response in Electric Power Systems, a Review
,”
Renewable Sustainable Energy Rev.
,
103
, pp.
308
319
.
41.
Hussain
,
M.
, and
Gao
,
Y.
,
2018
, “
A Review of Demand Response in an Efficient Smart Grid Environment
,”
Electr. J.
,
31
(
5
), pp.
55
63
.
42.
Yan
,
X.
,
Ozturk
,
Y.
,
Hu
,
Z.
, and
Song
,
Y.
,
2018
, “
A Review on Price-Driven Residential Demand Response
,”
Renewable Sustainable Energy Rev.
,
96
, pp.
411
419
.
43.
Aketi
,
P.
, and
Sen
,
S.
,
2014
, “
Modeling Demand Response and Economic Impact of Advanced and Smart Metering
,”
Energy Syst.
,
5
(
3
), pp.
583
606
.
44.
Williamson
,
C.
, and
Marrin
,
K.
, “
Peak Time Rebate’s Dirty Little Secret
,” http://library.aesp.org.
45.
Fenrick
,
S.
,
2016
, “
Dynamic Pricing Programs Focus on Peak-Time Rebate Programs
,” fenricks@powersystem.org
46.
Paterakis
,
N. G.
,
Erdinç
,
O.
, and
Catalão
,
J. P. S.
,
2017
, “
An Overview of Demand Response: Key-Elements and International Experience
,”
Renewable Sustainable Energy Rev.
,
69
, pp.
871
891
.
47.
Tarasak
,
P.
,
Chai
,
C. C.
,
Kwok
,
Y. S.
, and
Oh
,
S. W.
,
2014
, “
Demand Bidding Program and Its Application in Hotel Energy Management
,”
IEEE Trans. Smart Grid
,
5
(
2
), pp.
821
828
.
48.
Rahmani-Andebili
,
M.
,
2016
, “
Modeling Nonlinear Incentive-Based and Price-Based Demand Response Programs and Implementing on Real Power Markets
,”
Electr. Power Syst. Res.
,
132
, pp.
115
124
.
49.
Kim
,
D. M.
, and
Kim
,
J. O.
,
2012
, “
Design of Emergency Demand Response Program Using Analytic Hierarchy Process
,”
IEEE Trans. Smart Grid
,
3
(
2
), pp.
635
644
.
50.
Wang
,
S.
,
Xue
,
X.
, and
Yan
,
C.
,
2014
, “
Building Power Demand Response Methods Toward Smart Grid
,”
HVACR Res.
,
20
(
6
), pp.
665
687
.
51.
Shafie-Khah
,
M.
,
Siano
,
P.
,
Aghaei
,
J.
,
Masoum
,
M. A. S.
,
Li
,
F.
, and
Catalao
,
J. P. S.
,
2019
, “
Comprehensive Review of the Recent Advances in Industrial and Commercial DR
,”
IEEE Trans. Ind. Inf.
,
15
(
7
), pp.
3757
3771
.
52.
Slim
,
2022
, “
HVAC System and their Applications, 2022
,” https://www.slim.it.
53.
Weck
,
M. H. J.
,
van Hooff
,
J.
, and
van Sark
,
W. G. J. H. M.
,
2017
, “
Review of Barriers to the Introduction of Residential Demand Response: A Case Study in the Netherlands
,”
Int. J. Energy Res.
,
41
(
6
), pp.
790
816
.
54.
O’connell
,
N.
,
Pinson
,
P.
,
Madsen
,
H.
, and
O’malley
,
M.
, “
Building 322, Matematiktorvet, Technical University of Denmark, DK-2800
.”
55.
Nasir
,
T.
,
Bukhari
,
S. S. H.
,
Raza
,
S.
,
Munir
,
H. M.
,
Abrar
,
M.
,
Muqeet
,
H. A. U.
,
Bhatti
,
K. L.
,
Ro
,
J.-S.
, and
Masroor
,
R.
,
2021
, “
Recent Challenges and Methodologies in Smart Grid Demand Side Management: State-of-the-Art Literature Review
,”
Math. Probl. Eng.
,
2021
, pp.
1
16
.
56.
Hurley
,
D.
,
Peterson
,
P.
, and
Whited
,
M.
,
2013
, “
Demand Response as a Power System Resource Program Designs, Performance, and Lessons Learned in the United States
,” www.raponline.org.
57.
Venkatesan
,
N.
,
2011
, “
Modeling and Integration of Demand Response and Demand Side Modeling and Integration of Demand Response and Demand Side Resources for Smart Grid Application in Distribution Systems Resources for Smart Grid Application in Distribution Systems
,” https://researchrepository.wvu.edu/etd/606.
58.
Torres
,
J.
,
2011
, “
Smart Grid: Challenges and Opportunities
,” jjtore@sandia.gov.
59.
Hansen
,
J.
,
Knudsen
,
J.
, and
Annaswamy
,
A. M.
,
2014
, “
Demand Response in Smart Grids: Participants, Challenges, and a Taxonomy
,”
Proceedings of the IEEE Conference on Decision and Control
,
Los Angeles, CA
,
Dec. 15–17
, Institute of Electrical and Electronics Engineers Inc., pp.
4045
4052
.
60.
Shoreh
,
M. H.
,
Siano
,
P.
,
Shafie-khah
,
M.
,
Loia
,
V.
, and
Catalão
,
J. P. S.
,
2016
, “
A Survey of Industrial Applications of Demand Response
,”
Electr. Power Syst. Res.
,
141
, pp.
31
49
.
61.
Paverd
,
A.
,
Martin
,
A.
, and
Brown
,
I.
, “Security and Privacy in Smart Grid Demand Response Systems.”
62.
Yadav
,
A.
,
2017
, “
Demand Response Potential, Challenges, & Solutions in Indian Context
,” linkedin.com.
You do not currently have access to this content.