Abstract

In this paper, the energy efficiency potential of applying novel dynamic insulation systems to slab foundations is investigated for residential buildings. Specifically, dynamic insulation allows the foundation to change its thermal resistance to reduce both heating and cooling thermal loads compared to static insulation systems. The energy benefits of the dynamic insulation are evaluated using a validated numerical model integrated with a state-of-art whole-building simulation tool. Specifically, optimal settings for slab-integrated dynamic insulation are determined monthly to reduce heating and cooling thermal loads while maintaining thermal comfort for a prototypical house located in representative US climates. The analysis results indicate that the deployment of slab-integrated dynamic insulation can reduce heating energy by 10% and cooling energy by 39%, and total heating, ventilating, and air conditioning end-use by up to 12%, especially for houses located in cold climates.

References

1.
Dehwah
,
A.
,
Asif
,
M.
, and
Rahman
,
M. T.
,
2018
, “
Prospects of PV Application in Unregulated Building Rooftops in Developing Countries: A Perspective From Saudi Arabia
,”
Energy Build.
,
171
, pp.
76
87
.
2.
Pérez-Lombard
,
L.
,
Ortiz
,
J.
, and
Pout
,
C.
,
2008
, “
A Review on Buildings Energy Consumption Information
,”
Energy Build.
,
40
(
3
), pp.
394
398
.
3.
Harish
,
V.
, and
Kumar
,
A.
,
2016
, “
A Review on Modeling and Simulation of Building Energy Systems
,”
Renew. Sustain. Energy Rev.
,
56
, pp.
1272
1292
.
4.
Luo
,
Y.
,
Zhang
,
L.
,
Bozlar
,
M.
,
Liu
,
Z.
,
Guo
,
H.
, and
Meggers
,
F.
,
2019
, “
Active Building Envelope Systems Toward Renewable and Sustainable Energy
,”
Renew. Sustain. Energy Rev.
,
104
, pp.
470
491
.
5.
Alam
,
M.
,
Singh
,
H.
,
Suresh
,
S.
, and
Redpath
,
D. A. G.
,
2017
, “
Energy and Economic Analysis of Vacuum Insulation Panels (VIPs) Used in Non-Domestic Buildings
,”
Appl. Energy
,
188
, pp.
1
8
.
6.
Baetens
,
R.
,
Jelle
,
B.
,
Gustavsen
,
A.
, and
Grynning
,
S.
,
2010
, “
Gas-Filled Panels for Building Applications: A State-of-the-Art Review
,”
Energy Build.
,
42
(
11
), pp.
1969
1975
.
7.
Adhikary
,
S.
,
Ashish
,
D.
, and
Rudžionis
,
Ž
,
2021
, “
Aerogel Based Thermal Insulating Cementitious Composites: A Review
,”
Energy Build.
,
245
, p.
111058
.
8.
Kumar
,
D.
,
Alam
,
M.
,
Zou
,
P.
,
Sanjayan
,
J. G.
, and
Memon
,
R. A.
,
2020
, “
Comparative Analysis of Building Insulation Material Properties and Performance
,”
Renew. Sustain. Energy Rev.
,
131
, p.
110038
.
9.
IECC
,
2018
,
International Energy Conservation Code
,
International Code Council
,
Washington DC
.
10.
Deru
,
M.
,
2003
, “
A Model for Ground-Coupled Heat and Moisture Transfer from Buildings
.”
11.
Krarti
,
M.
,
2021
,
Energy Audit of Building Systems, An Engineering Approach
, 3rd ed.,
CRC Press, Taylor and Francis Group
,
Boca Raton, FL
.
12.
Rees
,
S.
,
Adjali
,
M.
,
Zhou
,
Z.
,
Davies
,
M.
, and
Thomas
,
H. R.
,
2000
, “
Ground Heat Transfer Effects on the Thermal Performance of Earth-Contact Structures
,”
Renew. Sustain. Energy Rev.
,
4
(
3
), pp.
213
265
.
13.
Krarti
,
M.
,
1999
,
Foundation Heat Transfer, in Advances in Solar Energy
,
American Society for Solar Energy
,
Boulder, CO
.
14.
Liu
,
Z.
,
Alterman
,
D.
,
Page
,
A.
,
Moghtaderi
,
B.
, and
Chen
,
D.
,
2021
, “
An Experimental Study on the Thermal Effects of Slab-Edge-Insulation for Slab-On-Grade Housing in a Moderate Australian Climate
,”
Energy Build.
,
235
, p.
110675
.
15.
Krarti
,
M.
, and
Choi
,
S.
,
1996
,
Simplified Method for Foundation Heat Loss Calculation
,
ASHRAE Inc.
,
Atlanta, GA
.
16.
Ren
,
Z.
,
Motlagh
,
O.
, and
Chen
,
D.
,
2020
, “
A Correlation-Based Model for Building Ground-Coupled Heat Loss Calculation Using Artificial Neural Network Techniques
,”
J. Build. Perform. Simul.
,
13
(
1
), pp.
48
58
.
17.
Saied
,
A. E.
,
Maalouf
,
C.
,
Bejat
,
T.
, and
Wurtz
,
E.
,
2022
, “
Slab-On-Grade Thermal Bridges: A Thermal Behavior and Solution Review
,”
Energy Build.
,
257
, p.
111770
.
18.
Chen
,
D.
,
2017
, “
Heat Loss Via Concrete Slab Floors in Australian Houses
,”
Procedia Eng.
,
205
, pp.
108
115
.
19.
Yu
,
J.
,
Kang
,
Y.
, and
(John) Zhai
,
Z.
,
2020
, “
Comparison of Ground Coupled Heat Transfer Models for Predicting Underground Building Energy Consumption
,”
J. Build. Eng.
,
32
, p.
101808
.
20.
Andolsun
,
S.
,
Culp
,
C. H.
,
Haberl
,
J. S.
, and
Witte
,
M. J.
,
2012
, “
EnergyPlus vs DOE-2.1e: The Effect of Ground Coupling on Cooling/Heating Energy Requirements of Slab-On-Grade Code Houses in Four Climates of the US
,”
Energy Build.
,
52
, pp.
189
206
.
21.
Xing
,
L.
,
2008
, “
Estimation of Undisturbed Ground Temperatures Using Numerical and Analytical Modeling
”.
22.
Gutiérrez González
,
V.
,
Ramos Ruiz
,
G.
, and
Fernández Bandera
,
C.
,
2022
, “
Ground Characterization of Building Energy Models
,”
Energy Build.
,
254
, p.
111565
.
23.
Masoso
,
O.
, and
Grobler
,
L.
,
2008
, “
A New and Innovative Look at Anti-Insulation Behaviour in Building Energy Consumption
,”
Energy Build.
,
40
(
10
), pp.
1889
1894
.
24.
Taylor
,
B.
, and
Imababi
,
M.
,
1998
, “
The Application of Dynamic Insulation on Building Envelopes
,”
Renewable Energy
,
15
(
1–4
), pp.
277
283
.
25.
Park
,
B.
,
Srubar
,
W.
, and
Krarti
,
M.
,
2015
, “
Energy Performance Analysis of Variable Thermal Resistance Envelopes in Residential Buildings
,”
Energy Build.
,
103
, pp.
317
325
.
26.
Rupp
,
S.
, and
Krarti
,
M.
,
2019
, “
Analysis of Multi-Step Control Strategies for Dynamic Insulation Systems
,”
Energy Build.
,
204
, p.
109459
.
27.
Cui
,
H.
, and
Overend
,
M.
,
2019
, “
A Review of Heat Transfer Characteristics of Switchable Insulation Technologies for Thermally Adaptive Building Envelopes
,”
Energy Build.
,
199
, pp.
427
444
.
28.
Benson
,
D.
,
Potter
,
T.
, and
Tracy
,
C. E.
,
1994
, “
Design of a Variable-Conductance Vacuum Insulation
,” Available: https://about.jstor.org/terms
29.
Kimber
,
M.
,
Clark
,
W.
, and
Schaefer
,
L.
,
2014
, “
Conceptual Analysis and Design of a Partitioned Multifunctional Smart Insulation
,”
Appl. Energy
,
114
, pp.
310
319
.
30.
Zheng
,
R.
,
Gao
,
J.
,
Wang
,
J.
, and
Chen
,
G.
,
2011
, “
Reversible Temperature Regulation of Electrical and Thermal Conductivity Using Liquid-Solid Phase Transitions
,”
Nat. Commun.
,
2
(
1
).
31.
Krzaczek
,
M.
, and
Kowalczuk
,
Z.
,
2011
, “
Thermal Barrier as a Technique of Indirect Heating and Cooling for Residential Buildings
,”
Energy Build.
,
43
(
4
), pp.
823
837
.
32.
Fantucci
,
S.
,
Serra
,
V.
, and
Perino
,
M.
,
2015
, “
Dynamic Insulation Systems: Experimental Analysis on a Parietodynamic Wall
,”
Energy Procedia
,
78
, pp.
549
554
.
33.
Wang
,
Y.
, and
Peterson
,
G. P.
,
2005
, “
Investigation of a Novel Flat Heat Pipe
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
2
), pp.
165
170
.
34.
Dabbagh
,
M.
, and
Krarti
,
M.
,
2020
, “
Evaluation of the Performance for a Dynamic Insulation System Suitable for Switchable Building Envelope
,”
Energy Build.
,
222
, p.
110025
.
35.
Shekar
,
V.
, and
Krarti
,
M.
,
2017
, “
Control Strategies for Dynamic Insulation Materials Applied to Commercial Buildings
,”
Energy Build.
,
154
, pp.
305
320
.
36.
Menyhart
,
K.
, and
Krarti
,
M.
,
2017
, “
Potential Energy Savings From Deployment of Dynamic Insulation Materials for US Residential Buildings
,”
Build. Environ.
,
114
, pp.
203
218
.
37.
Dehwah
,
A.
, and
Krarti
,
M.
,
2020
, “
Impact of Switchable Roof Insulation on Energy Performance of US Residential Buildings
,”
Build. Environ.
,
177
, p.
106882
.
38.
Dabbagh
,
M.
, and
Krarti
,
M.
,
2021
, “
Energy Performance of Switchable Window Insulated Shades for US Residential Buildings
,”
J. Build. Eng.
,
43
, p.
102584
.
39.
Giuseppe
,
E.
,
D’Orazio
,
M.
, and
di Perna
,
C.
,
2015
, “
Thermal and Filtration Performance Assessment of a Dynamic Insulation System
,”
Energy Procedia
,
78
, pp.
513
518
.
40.
Kishore
,
R.
,
Bianchi
,
M.
,
Booten
,
C.
,
Vidal
,
J.
, and
Jackson
,
R.
,
2021
, “
Enhancing Building Energy Performance by Effectively Using Phase Change Material and Dynamic Insulation in Walls
,”
Appl. Energy
,
283
, p.
116306
.
41.
USDOE
,
2021
,
EnergyPlus Engineering Documentation
,
US Department of Energy
,
Washington DC
, https://energyplus.net/, Accessed August 4, 2021.
42.
Crawley
,
D. B.
,
Lawrie
,
L. K.
,
Winkelmann
,
F. C.
,
Buhl
,
W. F.
,
Huang
,
Y. J.
,
Pedersen
,
C. O.
,
Strand
,
R. K.
, et al
,
2001
, “
EnergyPlus: Creating a New-Generation Building Energy Simulation Program
,”
Energy Build.
,
33
(
4
), pp.
319
331
.
43.
Kusuda
,
P. R.
,
1965
,
Earth Temperature and Thermal Diffusivity at Selected Stations in the United State
,
National Bureau of Standards
,
Gaithersburg, MD
.
44.
Pinel
,
P.
, and
Beausoleil-Morrison
,
I.
,
2012
, “
Coupling Soil, Heat, and Mass Transfer Models to Foundations in Whole Building Simulation Packages
,”
Proceedings of eSim 2012
,
Halifax, Canada
,
May 1–4
.
45.
Neymark
,
J.
,
Judkoff
,
R.
,
Beausoleil-Morrison
,
I.
,
Ben-Nakhi
,
A.
,
Crowley
,
M.
,
Deru
,
M.
,
Henninger
,
R.
, et al
,
2009
, “
IEA BESTEST In-Depth Diagnostic Cases for Ground Coupled Heat Transfer Related to Slab-on-Grade Construction: Preprint
.”
46.
MATLAB & Simulink
,” https://www.mathworks.com/products/matlab.html, Accessed August 4, 2021.
47.
Delsante
,
A.
,
1983
, “
Application of Fourier Transforms to Periodic Heat Flow Into the Ground Under a Building
,”
J. Heat Mass Transfer
,
26
(
1
), pp.
121
132
.
48.
Kruis
,
N.
,
2015
, “
Development and Application of a Numerical Framework for Improving Building Foundation Heat Transfer Calculations
,”
Ph.D. dissertation
,
University of Colorado
,
Boulder, CO
.
49.
Dehwah
,
A.
, and
Krarti
,
M.
,
2021
, “
Energy Performance of Integrated Adaptive Envelope Systems for Residential Buildings
,”
Energy
,
233
, p.
121165
.
50.
Dehwah
,
A.
, and
Krarti
,
M.
,
2021
, “
Control Strategies for Switchable Roof Insulation Systems Applied to US Residential Homes
,”
Energy Build.
,
231
, p.
110649
.
51.
Booten
,
C.
,
Robertson
,
J.
,
Christensen
,
D.
,
Heaney
,
M.
,
Brown
,
D.
,
Norton
,
P.
,
Smith
,
C.
,
2017
, “
Residential Indoor Temperature Study
”.
52.
ASHRAE
,
2009
,
ASHRAE Handbook—Fundamentals
, SI ed.,
American Society for Heating, Refrigerating, and Air Conditioning Engineers
,
Atlanta, GA
.
53.
ASHRAE
,
2018
,
Standard 90.2-2018
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
,
Atlanta, GA
.
54.
Chen
,
D.
,
2017
, “
Heat Loss Via Concrete Slab Floors in Australian Houses
,”
Procedia Eng.
,
205
, pp.
108
115
.
55.
Alemi
,
P.
, and
Loge
,
F.
,
2017
, “
Energy Efficiency Measures in Affordable Zero Net Energy Housing: A Case Study of the UC Davis 2015 Solar Decathlon Home
,”
Renewable Energy
,
101
, pp.
1242
1255
.
56.
ASHRAE
,
2019
,
Standard 62.2-2019
,
American Society of Heating, Refrigerating and Air-Conditioning Engineers
, https://ashrae.iwrapper.com/ASHRAE_PREVIEW_ONLY_STANDARDS/STD_62.2_2019, Accessed August 4, 2021.
57.
Cho
,
S.
,
Ray
,
S.
,
Im
,
P.
,
Honari
,
H.
, and
Ahn
,
J.
,
2017
, “
Methodology for Energy Strategy to Prescreen the Feasibility of Ground Source Heat Pump Systems in Residential and Commercial Buildings in the United States
,”
Energy Strategy Rev.
,
18
, pp.
53
62
.
You do not currently have access to this content.