Abstract

Lockdown measures and mobility restrictions to combat the spread of COVID-19 have impacted energy consumption patterns. The overall decline of energy use during lockdown restrictions can best be identified through the analysis of energy consumption by source and end-use sectors. Using monthly energy consumption data, the total 9-months use between January and September for the years 2015–2020 is calculated for each end-use sector (transportation, industrial, residential, and commercial). The cumulative consumption within these 9 months of the petroleum, natural gas, biomass, and electricity energy by the various end-use sectors are compared. The analysis shows that the transportation sector experienced the greatest decline (14.38%). To further analyze the impact of COVID-19 on each state within the USA, the consumption of electricity by each state and each end-use sector in the times before and during the pandemic is used to identify the impact of specific lockdown procedures on energy use. The distinction of state-by-state analysis in this study provides a unique metric for consumption forecasting. The average total consumption for each state was found for the years 2015–2019. The total average annual growth rate (AAGR) for 2020 was used to find a correlation coefficient between COVID-19 case and death rate, population density, and lockdown duration. A correlation coefficient was also calculated between the 2020 AAGR for all sectors and AAGR for each individual end-user. The results show that Indiana had the highest percent reduction in consumption of 10.07% while North Dakota had the highest consumption increase of 7.61%. This is likely due to the amount of industrial consumption relative to other sectors in the state.

References

1.
Bahmanyar
,
A.
,
Estebsari
,
A.
, and
Ernst
,
D.
,
2020
, “
The Impact of Different COVID-19 Containment Measures on Electricity Consumption in Europe
,”
Energy Res. Soc. Sci.
,
68
(
Special Issue: Special Section of COVID-19 Perspectives
), p.
101683
.
2.
Prol
,
J. L.
, and
Sungmin
,
O.
,
2020
, “
Impact of COVID-19 Measures on Short-Term Electricity Consumption in the Most Affected EU Countries and USA States
,”
iScience
,
23
(
10
).
3.
Carvalho
,
M.
,
Bandeira de Mello Delgado
,
D.
,
de Lima
,
K. M.
,
de Camargo Cancela
,
M.
,
dos Siqueira
,
C. A.
, and
de Souza
,
D. L. B.
,
2021
, “
Effects of the COVID-19 Pandemic on the Brazilian Electricity Consumption Patterns
,”
Int. J. Energy Res.
,
45
(
2
), pp.
3358
3364
.
4.
Aruga
,
K.
,
Islam
,
M. M.
, and
Jannat
,
A.
,
2020
, “
Effects of COVID-19 on Indian Energy Consumption
,”
Sustainability
,
12
(
14
), pp.
1
16
.
5.
Pesaran
,
M. H.
,
Shin
,
Y.
, and
Smith
,
R. J.
,
2001
, “
Bounds Testing Approaches to the Analysis of Level Relationships
,”
J. Appl. Econ.
,
16
(
3
), pp.
289
326
.
6.
Abu-Rayash
,
A.
, and
Dincer
,
I.
,
2020
, “
Analysis of the Electricity Demand Trends Amidst the COVID-19 Coronavirus Pandemic
,”
Energy Res. Soc. Sci.
,
68
(
Special Issue: Special Section of COVID-19 Perspectives
), p.
101682
.
7.
Leach
,
A.
,
Rivers
,
N.
, and
Shaffer
,
B.
,
2020
, “
Canadian Electricity Markets During the COVID-19 Pandemic: An Initial Assessment
,”
Can. Public Policy
,
46
(
S2
), pp.
S145
S159
.
8.
Ghiani
,
E.
,
Galici
,
M.
,
Mureddu
,
M.
, and
Pilo
,
F.
,
2020
, “
Impact on Electricity Consumption and Market Pricing of Energy and Ancillary Services During Pandemic of COVID-19 in Italy
,”
Energies
,
13
(
13
), p.
3357
.
9.
Moreland
,
A.
,
Herlihy
,
C.
,
Tynan
,
M. A.
,
Sunshine
,
G.
,
McCord
,
R. F.
,
Hilton
,
C.
,
Poovey
,
J.
,
Werner
,
A. K.
,
Jones
,
C. D.
,
Fulmer
,
E. B.
,
Gundlapalli
,
A. V.
,
Strosnider
,
H.
,
Potvien
,
A.
,
García
,
M. C.
,
Honeycutt
,
S.
,
Baldwin
,
G.
,
Clodfelter
,
C.
,
Howard-Williams
,
M.
,
Jeong
,
G.
,
Landsman
,
L.
,
Shelburne
,
J.
,
Brown
,
A.
,
Cramer
,
R.
,
Gilchrist
,
S.
,
Hulkower
,
R.
,
Limeres
,
A.
, and
Popoola
,
A.
,
2020
, “
Timing of State and Territorial COVID-19 Stay-at-Home Orders and Changes in Population Movement—United States, March 1–May 31, 2020
,”
Morb. Mortal. Wkly. Rep.
,
69
(
35
), pp.
1198
1203
.
10.
Agdas
,
D.
, and
Barooah
,
P.
,
2020
, “
Impact of the COVID-19 Pandemic on the U.S. Electricity Demand and Supply: An Early View From Data
,”
IEEE Access
,
8
, pp.
151523
151534
.
11.
Hirsh
,
R. F.
, and
Koomey
,
J. G.
,
2015
, “
Electricity Consumption and Economic Growth: A New Relationship With Significant Consequences?
,”
Electr. J.
,
28
(
9
), pp.
72
84
.
12.
Klemeš
,
J. J.
,
Van Fan
,
Y.
, and
Jiang
,
P.
,
2020
, “
The Energy and Environmental Footprints of COVID-19 Fighting Measures—PPE, Disinfection, Supply Chains
,”
Energy
,
211
.
13.
Zhong
,
H.
,
Tan
,
Z.
,
He
,
Y.
,
Xie
,
L.
, and
Kang
,
C.
,
2020
, “
Implications of COVID-19 for the Electricity Industry: A Comprehensive Review
,”
CSEE J. Power Energy Syst.
,
6
(
3
), pp.
489
495
.
14.
Karaer
,
A.
,
Balafkan
,
N.
,
Gazzea
,
M.
,
Arghandeh
,
R.
, and
Ozguven
,
E. E.
,
2020
, “
Analyzing Covid-19 Impacts on Vehicle Travels and Daily Nitrogen Dioxide (NO2) Levels Among Florida Counties
,”
Energies
,
13
(
22
), p.
6044
.
15.
Le Quéré
,
C.
,
Jackson
,
R. B.
,
Jones
,
M. W.
,
Smith
,
A. J. P.
,
Abernethy
,
S.
,
Andrew
,
R. M.
,
De-Gol
,
A. J.
,
Willis
,
D. R.
,
Shan
,
Y.
,
Canadell
,
J. G.
,
Friedlingstein
,
P.
,
Creutzig
,
F.
, and
Peters
,
G. P.
,
2020
, “
Temporary Reduction in Daily Global CO2 Emissions During the COVID-19 Forced Confinement
,”
Nat. Clim. Change
,
10
(
7
), pp.
647
653
.
16.
Buechler
,
E.
,
Powell
,
S.
,
Sun
,
T.
,
Zanocco
,
C.
,
Astier
,
N.
,
Bolorinos
,
J.
,
Flora
,
J.
,
Boudet
,
H.
, and
Rajagopal
,
R.
,
2020
, “
Power and the Pandemic: Exploring Global Changes in Electricity Demand During COVID-19
,”
arXiv:2008.06988 [physics]
.
17.
Liu
,
Z.
,
Guan
,
D.
,
Wei
,
W.
,
Davis
,
S. J.
,
Ciais
,
P.
,
Bai
,
J.
,
Peng
,
S.
,
Zhang
,
Q.
,
Hubacek
,
K.
,
Marland
,
G.
,
Andres
,
R. J.
,
Crawford-Brown
,
D.
,
Lin
,
J.
,
Zhao
,
H.
,
Hong
,
C.
,
Boden
,
T. A.
,
Feng
,
K.
,
Peters
,
G. P.
,
Xi
,
F.
,
Liu
,
J.
,
Li
,
Y.
,
Zhao
,
Y.
,
Zeng
,
N.
, and
He
,
K.
,
2015
, “
Reduced Carbon Emission Estimates From Fossil Fuel Combustion and Cement Production in China
,”
Nature
,
524
(
7565
), pp.
335
338
.
18.
Liu
,
Z.
,
Ciais
,
P.
,
Deng
,
Z.
,
Lei
,
R.
,
Davis
,
S. J.
,
Feng
,
S.
,
Zheng
,
B.
,
Cui
,
D.
,
Dou
,
X.
,
Zhu
,
B.
, and
Guo
,
R.
,
2020
, “
Near-Real-Time Monitoring of Global CO2 Emissions Reveals the Effects of the COVID-19 Pandemic
,”
Nat. Commun.
,
11
(
1
), pp.
1
12
.
19.
IEA
,
2020
, “
Global Energy Review 2020: The Impacts of the Covid-19 Crisis on Global Energy Demand and CO2 Emission
,”
OECD Publishing
,
20.
Hasegawa
,
T.
,
2020
, “
Effects of Novel Coronavirus (COVID‐19) on Civil Aviation: Economic Impact Analysis
,”
ICAO
, https://policycommons.net/artifacts/1439929/icao-covid-2021-03-23-economic-impact-th-toru/2067530/, Accessed September, 2, 2021.
21.
Kapparashetty
,
B. V.
,
2020
, “
Impact of Covid 19 on Industrial Sector—A Study
,”
Int. J. Res. Anal. Rev.
,
7
(
1
), pp.
422
429
.
22.
Moritz
,
B.
,
2020
, “
Supply Chain Disruptions and COVID-19: What is Different About COVID-19 and Other Supply Chain Disruptions?
Supply Chain Manag. Rev.
,
24
(
3
), pp.
14
17
.
23.
2019
, “
Population Density in the U.S. by Federal States Including District of Columbia in 2019
.” Statista [Online], https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
24.
Wu
,
J.
,
Smith
,
S.
,
Khurana
,
M.
,
Siemaszko
,
C.
, and
DeJesus-Banos
,
B.
,
2020
, “
Stay-at-Home Orders Across the Country
.” NBC News [Online], https://www.nbcnews.com/health/health-news/here-are-stay-home-orders-across-country-n1168736#alabama
You do not currently have access to this content.