Abstract

This paper presents a novel architecture for model predictive control (MPC)-based indoor climate control of multi-zone buildings to provide energy efficiency. Unlike prior works, we do not assume the availability of a high-resolution multi-zone building model, which is challenging to obtain. Instead, the architecture uses a low-resolution model of the building that is divided into a small number of “meta-zones” that can be easily identified using existing data-driven modeling techniques. The proposed architecture is hierarchical. At the higher level, an MPC controller uses the low-resolution model to make decisions for the air handling unit (AHU) and the meta-zones. Since the meta-zones are fictitious, a lower level controller converts the high-level MPC decisions into commands for the individual zones by solving a projection problem that strikes a trade-off between two potentially conflicting goals: the AHU-level decisions made by the MPC are respected while the climate of the individual zones is maintained within the comfort bounds. The performance of the proposed controller is assessed via simulations in a high-fidelity simulation testbed and compared to that of a rule-based controller that is used in practice. Simulations in multiple weather conditions show the effectiveness of the proposed controller in terms of energy savings, climate control, and computational tractability.

References

1.
Serale
,
G.
,
Fiorentini
,
M.
,
Capozzoli
,
A.
,
Bernardini
,
D.
, and
Bemporad
,
A.
,
2018
, “
Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities
,”
Energies
,
11
(
3
), p.
631
.
2.
Shaikh
,
P. H.
,
Nor
,
N. B. M.
,
Nallagownden
,
P.
,
Elamvazuthi
,
I.
, and
Ibrahim
,
T.
,
2014
, “
A Review on Optimized Control Systems for Building Energy and Comfort Management of Smart Sustainable Buildings
,”
Renewable. Sustainable. Energy. Rev.
,
34
, pp.
409
429
.
3.
Goyal
,
S.
, and
Barooah
,
P.
,
2013
, “
Energy-Efficient Control of an Air Handling Unit for a Single-Zone VAV System
,”
IEEE Conference on Decision and Control
,
Florence, Italy
, pp.
4796
4801
.
4.
Joe
,
J.
, and
Karava
,
P.
,
2019
, “
A Model Predictive Control Strategy to Optimize the Performance of Radiant Floor Heating and Cooling Systems in Office Buildings
,”
Appl. Energy.
,
245
, pp.
65
77
.
5.
Raman
,
N. S.
,
Devaprasad
,
K.
,
Chen
,
B.
,
Ingley
,
H. A.
, and
Barooah
,
P.
,
2020
, “
Model Predictive Control for Energy-Efficient HVAC Operation With Humidity and Latent Heat Considerations
,”
Appl. Energy.
,
279
(Dec.), p.
115765
.
6.
Chen
,
X.
,
Wang
,
Q.
, and
Srebric
,
J.
,
2016
, “
Occupant Feedback Based Model Predictive Control for Thermal Comfort and Energy Optimization: A Chamber Experimental Evaluation
,”
Appl. Energy.
,
164
, pp.
341
351
.
7.
Ma
,
J.
,
Qin
,
J.
,
Salsbury
,
T.
, and
Xu
,
P.
,
2012
, “
Demand Reduction in Building Energy Systems Based on Economic Model Predictive Control
,”
Chem. Eng. Sci.
,
67
(
1
), pp.
92
100
. Dynamics, Control and Optimization of Energy Systems.
8.
Bengea
,
S. C.
,
Kelman
,
A. D.
,
Borrelli
,
F.
,
Taylor
,
R.
, and
Narayanan
,
S.
,
2013
, “
Implementation of Model Predictive Control for An HVAC System in a Mid-size Commercial Building
,”
HVAC &R Res.
,
20
(
1
), pp.
121
135
.
9.
Radhakrishnan
,
N.
,
Su
,
Y.
,
Su
,
R.
, and
Poolla
,
K.
,
2016
, “
Token Based Scheduling for Energy Management in Building HVAC Systems
,”
Appl. Energy.
,
173
, pp.
67
79
.
10.
Png
,
E.
,
Srinivasan
,
S.
,
Bekiroglu
,
K.
,
Chaoyang
,
J.
,
Su
,
R.
, and
Poolla
,
K.
,
2019
, “
An Internet of Things Upgrade for Smart and Scalable Heating, Ventilation and Air-conditioning Control in Commercial Buildings
,”
Appl. Energy.
,
239
, pp.
408
424
.
11.
Ma
,
Y.
,
Richter
,
S.
, and
Borrelli
,
F.
,
2012
, “
Chapter 14: Distributed Model Predictive Control for Building Temperature Regulation
,”
Control Optim. Differ. Algebraic Constraints
,
22
(March), pp.
293
314
.
12.
Mei
,
J.
, and
Xia
,
X.
,
2018
, “
Multi-Zone Building Temperature Control and Energy Efficiency Using Autonomous Hierarchical Control Strategy
,”
2018 IEEE 14th International Conference on Control and Automation (ICCA)
,
Anchorage, AL
, pp.
884
889
.
13.
Patel
,
N. R.
,
Risbeck
,
M. J.
,
Rawlings
,
J. B.
,
Wenzel
,
M. J.
, and
Turney
,
R. D.
,
2016
, “
Distributed Economic Model Predictive Control for Large-scale Building Temperature Regulation
,”
2016 American Control Conference (ACC)
,
Boston, MA
, pp.
895
900
.
14.
Yang
,
Y.
,
Hu
,
G.
, and
Spanos
,
C. J.
,
2020
, “
HVAC Energy Cost Optimization for a Multizone Building Via a Decentralized Approach
,”
IEEE Transactions on Automation Science and Engineering
,
17
(
4
), pp.
1950
1960
.
15.
Long
,
Y.
,
Liu
,
S.
,
Xie
,
L.
, and
Johansson
,
K. H.
,
2016
, “
A Hierarchical Distributed MPC for HVAC Systems
,”
2016 American Control Conference (ACC)
,
Boston, MA
, pp.
2385
2390
.
16.
Jorissen
,
F.
, and
Helsen
,
L.
,
2016
, “
Towards An Automated Tool Chain for MPC in Multi-Zone Buildings
,”
4th International Conference on High Performance Buildings
,
West Lafayette, IN
, pp.
1
10
.
17.
Li
,
X.
, and
Wen
,
J.
,
2014
, “
Review of Building Energy Modeling for Control and Operation
,”
Renew. Sustain. Energy Rev.
,
37
, pp.
517
537
.
18.
Kim
,
D.
,
Cai
,
J.
,
Ariyur
,
K. B.
, and
Braun
,
J. E.
,
2016
, “
System Identification for Building Thermal Systems Under the Presence of Unmeasured Disturbances in Closed Loop Operation: Lumped Disturbance Modeling Approach
,”
Build. Environ.
,
107
, pp.
169
180
.
19.
Zeng
,
T.
, and
Barooah
,
P.
,
2020
, “
Identification of Network Dynamics and Disturbance for a Multi-zone Building
,”
IEEE Trans. Control Syst. Technol.
,
28
(Aug.), pp.
2061
2068
.
20.
Guo
,
Z.
,
Coffman
,
A. R.
,
Munk
,
J.
,
Im
,
P.
,
Kuruganti
,
T.
, and
Barooah
,
P.
,
2020
, “
Aggregation and Data Driven Identification of Building Thermal Dynamic Model and Unmeasured Disturbance
,”
Energy Build
,
231
, p.
110500
.
21.
Fritzson
,
P.
, and
Engelson
,
V.
,
1998
,
Modelica — A Unified Object-Oriented Language for System Modeling and Simulation
,
E.
Jul
, ed.,
Springer
,
Berlin/Heidelberg, Germany
, pp.
67
90
.
22.
ASHRAE
,
2011
,
The ASHRAE Handbook: HVAC Applications
, SI ed.,
ASHRAE
,
Atlanta, GA
.
23.
Jana
,
R. L.
,
Dey
,
S.
, and
Dasgupta
,
P.
,
2020
, “
A Hierarchical HVAC Control Scheme for Energy-Aware Smart Building Automation
,”
Assoc. Comput. Mach.
,
25
(
4
), pp.
31:1
31:33
.
24.
Liang
,
W.
,
Quinte
,
R.
,
Jia
,
X.
, and
Sun
,
J.-Q.
,
2015
, “
MPC Control for Improving Energy Efficiency of a Building Air Handler for Multi-Zone VAVs
,”
Build. Environ.
,
92
, pp.
256
268
.
25.
Ma
,
Y.
,
Matuško
,
J.
, and
Borrelli
,
F.
,
2015
, “
Stochastic Model Predictive Control for Building HVAC Systems: Complexity and Conservatism
,”
IEEE Trans. Control Syst. Technol.
,
23
(
1
), pp.
101
116
.
26.
Huang
,
S.
,
Lin
,
Y.
,
Chinde
,
V.
,
Ma
,
X.
, and
Lian
,
J.
,
2021
, “
Simulation-Based Performance Evaluation of Model Predictive Control for Building Energy Systems
,”
Appl. Energy.
,
281
, p.
116027
.
27.
Jorissen
,
F.
,
Reynders
,
G.
,
Baetens
,
R.
,
Picard
,
D.
,
Saelens
,
D.
, and
Helsen
,
L.
,
2018
, “
Implementation and Verification of the IDEAS Building Energy Simulation Library
,”
J. Build. Perform. Simulat.
,
11
(
6
), pp.
669
688
.
28.
IBPSA
, “Modelica IBPSA library,” https://github.com/ibpsa/modelica-ibpsa.
29.
Wetter
,
M.
,
Zuo
,
W.
,
Nouidui
,
T. S.
, and
Pang
,
X.
,
2014
, “
Modelica Buildings Library
,”
J. Build. Perform. Simulat.
,
7
(
4
), pp.
253
270
.
30.
Raman
,
N. S.
,
Chaturvedi
,
R. U.
,
Guo
,
Z.
, and
Barooah
,
P.
,
2021
, “
MPC-Based Hierarchical Control of a Multi-Zone Commercial HVAC System
,” arXiv preprint:2102.02914.
31.
Roulet
,
C.-A.
,
Heidt
,
F.
,
Foradini
,
F.
, and
Pibiri
,
M.-C.
,
2001
, “
Real Heat Recovery With Air Handling Units
,”
Energy Build.
,
33
(
5
), pp.
495
502
.
32.
ASHRAE
,
2017
,
The ASHRAE Handbook Fundamentals
, SI ed.,
ASHRAE
,
Atlanta, GA
.
33.
Goyal
,
S.
, and
Barooah
,
P.
,
2012
, “
A Method for Model-Reduction of Non-Linear Thermal Dynamics of Multi-Zone Buildings
,”
Energy Build.
,
47
(April), pp.
332
340
.
34.
ASHRAE
,
2016
, ANSI/ASHRAE standard 62.1-2016, ventilation for acceptable air quality.
35.
Deng
,
K.
,
Goyal
,
S.
,
Barooah
,
P.
, and
Mehta
,
P. G.
,
2014
, “
Structure-Preserving Model Reduction of Nonlinear Building Thermal Models
,”
Automatica
,
50
(
4
), pp.
1188
1195
.
36.
Goyal
,
S.
,
Ingley
,
H.
, and
Barooah
,
P.
,
2013
, “
Occupancy-based Zone Climate Control for Energy Efficient Buildings: Complexity Vs. Performance
,”
Appl. Energy.
,
106
, pp.
209
221
.
37.
Andersson
,
J. A. E.
,
Gillis
,
J.
,
Horn
,
G.
,
Rawlings
,
J. B.
, and
Diehl
,
M.
,
2019
, “
Casadi: A Software Framework for Nonlinear Optimization and Optimal Control
,”
Mathe. Program. Comput.
,
11
(
1
), pp.
1
36
.
38.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of An Interior-Point Filter Line-search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Program.
,
106
(
1
), pp.
25
57
.
39.
Williams
,
J.
,
2013
, “
Why is the Supply Air Temperature 55F?
http://8760engineeringblog.blogspot.com/2013/02/why-is-supply-air-temperature-55f.html, Accessed August 3, 2020.
You do not currently have access to this content.