Abstract

About 41% of total energy consumption in the United States of year 2014 is used for heating and air conditioning, which is about 40 quadrillion (40 × 1015) British thermal units (BTUs). Despite the fact that people have been working on fault detection and diagnosis (FDD) for heating, ventilation, and air conditioning (HVAC) systems for a long time, very few publications have focused on scalability and low cost. To address this challenge, we will propose an approach that focuses on control system data. Several machine learning algorithms are introduced for data exploration (e.g., DBSCAN, k-means) and analysis, rank-ordered weather data are used to define comparable days, a control system data focused model free approach is presented as well, and finally, fault detection is carried out by implementing anomaly algorithms (local outlier factor and isolation forest). Hidden faults were detected with a detection rate up to 90%+. The threshold parameter can be determined by selecting an acceptable true positive and false positive rate pair, which can be visualized using receiver operating characteristic (ROC) curves and is demonstrated in this article. A simulation model that is used to generate about 250 GB of data is used to evaluate the performance of various algorithms.

References

References
1.
Zhang
,
R.
, and
Hong
,
T.
,
2016
, “
Modeling of HVAC Operational Faults in Building Performance Simulation
,”
Appl. Energy.
,
202
, pp.
178
188
. 10.1016/j.apenergy.2017.05.153
2.
Wang
,
S.
, and
Xiao
,
F.
,
2004
, “
AHU Sensor Fault Diagnosis Using Principal Component Analysis Method
,”
Energy Buildings
,
36
(
2
), pp.
147
160
. 10.1016/j.enbuild.2003.10.002
3.
Li
,
S.
, and
Wen
,
J.
,
2014
, “
Application of Pattern Matching Method for Detecting Faults in Air Handling Unit System
,”
Automat. Constr.
,
43
, pp.
49
58
. 10.1016/j.autcon.2014.03.002
4.
Wang
,
S.
,
Zhou
,
Q.
, and
Xiao
,
F.
,
2008
, “
A System-Level Fault Detection and Diagnosis Strategy for HVAC Systems Involving Sensor Faults
,”
Energy Buildings
,
42
(
4
), pp.
477
490
. 10.1016/j.enbuild.2009.10.017
5.
Wu
,
S.
, and
Sun
,
J.
,
2010
, “
A Top-Down Strategy With Temporal and Spatial Partition for Fault Detection and Diagnosis of Building HVAC Systems
,”
Energy Buildings
,
43
(
9
), pp.
2134
2139
. 10.1016/j.enbuild.2011.04.020
6.
Beghi
,
A.
,
Brignoli
,
R.
,
Cecchinato
,
L.
,
Menegazzo
,
G.
,
Rampazzo
,
M.
, and
Simmini
,
F.
,
2015
, “
Data-Driven Fault Detection and Diagnosis for HVAC Water Chillers
,”
Control Eng. Pract.
,
53
(
0
), pp.
79
91
. 10.1016/j.conengprac.2016.04.018
7.
Chen
,
Y.
, and
Wen
,
J.
,
2017
, “
A Whole Building Fault Detection Using Weather Based Pattern Matching and Feature Based PCA Method
,”
IEEE International Conference on Big Data
,
Boston, MA
,
Dec. 11–14
.
8.
Narayanaswamy
,
B.
,
Balaji
,
B.
,
Gupta
,
R.
, and
Agarwal
,
Y.
,
2014
, “
Data Driven Investigation of Faults in HVAC Systems With Model, Cluster and Compare (MCC)
,”
BuildSys ’14 Proceedings
,
Memphis, TN
,
November
.
9.
Breunig
,
M. M.
,
Kriegel
,
H. -P.
,
Ng
,
R. T.
, and
Sander
,
J.
,
2000
, “
Lof: Identifying Density-based Local Outliers
,”
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data
,
Dallas, TX
,
May
.
10.
Liu
,
F. T.
,
Ting
,
K. M.
, and
Zhou
,
Z. -H.
,
2008
, “
Isolation Forest
,”
2008 Eighth IEEE International Conference on Data Mining
,
Pisa, Italy
,
Dec. 15–19
.
11.
Choudhary
,
D.
,
Kejariwal
,
A.
, and
Orsini
,
F.
,
2017
, “
On the Runtime-Efficacy Trade-Off of Anomaly Detection Techniques for Real-Time Streaming Data
,”
arXiv e-prints
. https://arxiv.org/abs/1710.04735
12.
Domingos
,
P.
,
2012
, “
A Few Useful Things to Know About Mach Learn
,”
Commun. Acm
,
55
(
10
), pp.
78
87
. 10.1145/2347736.2347755
13.
Aggarwal
,
C. C.
,
Hinneburg
,
A.
, and
Keim
,
D. A.
,
2001
, “
On the Surprising Behavior of Distance Metrics in High Dimensional Space
,”
International Conference on Database Theory
,
London, UK
,
Jan. 4–6
.
14.
Zimek
,
A.
,
Schubert
,
E.
, and
Kriegel
,
H.-P.
,
2012
, “
Review—A Survey on Unsupervised Outlier Detection in High-Dimensional Numerical Data
,”
Stat. Anal. Data Min.
,
5
(
5
), pp.
363
387
. 10.1002/sam.11161
15.
West
,
S. R.
,
Guo
,
Y.
,
Wang
,
X. R.
, and
Wall
,
J.
,
2011
, “
Automated Fault Detection and Diagnosis of HVAC Subsystems Using Statistical Mach Learn
,”
Proceedings of Building Simulation
,
Sydney, Australia
,
Nov. 14–16
.
16.
Najafi
,
M.
,
2010
, “
Fault Detection and Diagnosis in Building HVAC Systems
,” Ph.D. dissertation,
UC Berkeley
,
Berkeley, CA
.
17.
Verbert
,
K.
,
Babuška
,
R.
, and
Schutter
,
B. D.
,
2017
, “
Combining Knowledge and Historical Data for System-Level Fault Diagnosis of HVAC Systems
,”
Eng. Appl. Artif. Intel.
,
59
, pp.
260
273
. 10.1016/j.engappai.2016.12.021
18.
Turner
,
W.
,
Staino
,
A.
, and
Basu
,
B.
,
2017
, “
Residential HVAC Fault Detection Using a System Identification
,”
Energy Buildings
,
151
(
15
), pp.
1
17
. 10.1016/j.enbuild.2017.06.008
19.
Every
,
P. M. V.
,
Rodriguez
,
M.
,
Jones
,
C. B.
, and
Alberto
,
A.
,
2017
, “
Advanced Detection of HVAC Faults Using Unsupervised SVM Novelty Detection and Gaussian Process Models
,”
Energy Buildings
,
149
, pp.
216
224
. 10.1016/j.enbuild.2017.05.053
20.
Yang
,
X.-B.
,
Jin
,
X.-Q.
,
Du
,
Z.-M.
, and
Zhu
,
Y.-H.
,
2010
, “
A Novel Model-Based Fault Detection Method for Temperature Sensor Using Fractal Correlation Dimension
,”
Build Environ.
,
46
(
4
), pp.
970
979
. 10.1016/j.buildenv.2010.10.030
21.
Hu
,
R. L.
,
2016
, “
Machine Learning to Scale Fault Detection in Smart Energy Generation and Building Systems
,” Ph.D. dissertation,
UC Berkeley
,
Berkeley, CA
.
22.
Widodo
,
A.
, and
Yang
,
B.-S.
,
2006
, “
Support Vector Machine in Machine Condition Monitoring and Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2560
2574
. 10.1016/j.ymssp.2006.12.007
23.
Liang
,
J.
, and
Du
,
R.
,
2006
, “
Model-Based Fault Detection and Diagnosis of HVAC Systems Using Support Vector Machine Method
,”
Int. J. Refrigeration.
,
30
(
6
), pp.
1104
1114
. 10.1016/j.ijrefrig.2006.12.012
24.
Choi
,
K.
,
Namburu
,
S. M.
,
Azam
,
M.
,
Luo
,
J.
,
Pattipati
,
K.
, and
Patterson-Hine
,
A.
,
2004
, “
Fault Diagnosis in HVAC Chillers
,”
IEEE Proc. AUTOTESTCON.
,
8
(
3
), pp.
24
32
.
25.
Zhao
,
Y.
,
Wang
,
S.
, and
Xiao
,
F.
,
2012
, “
Pattern Recognition-Based Chillers Fault Detection Method Using Support Vector Data Description
,”
Appl. Energy
,
112
, pp.
1041
1048
. 10.1016/j.apenergy.2012.12.043
26.
Allen
,
W. H.
, and
Rubaai
,
A.
,
2013
, “
Fuzzy-Neuro Health Monitoring System for HVAC System Variable-Air-Volume Unit
,”
2013 IEEE Industry Applications Society Annual Meeting
,
Lake Buena Vista, FL
, pp.
1
8
. http://dx.doi.org/10.1109/IAS.2013.6682499
27.
Lo
,
C.
,
Chan
,
P.
,
Wong
,
Y.
,
Rad
,
A.
, and
Cheung
,
K.
,
2006
, “
Fuzzy-Genetic Algorithm for Automatic Fault Detection in HVAC Systems
,”
Appl. Soft Comput.
,
7
(
2
), pp.
554
560
. 10.1016/j.asoc.2006.06.003
28.
Frank
,
P. M.
,
1997
, “
Fuzzy Logic and Neural Network Applications to Fault Diagnosis
,”
Int. J. Approx. Reason.
,
16
(
1
), pp.
67
88
. 10.1016/S0888-613X(96)00116-8
29.
Parvaresh
,
A.
,
Hasanzade
,
A.
,
Mohammadi
,
S. M. A.
, and
Gharaveisi
,
A.
,
2012
, “
Fault Detection and Diagnosis in HVAC System Based on Soft Computing Approach
,”
Int. J. Soft Comput. Eng.
,
2
(
3
), pp.
2231
2307
.
30.
Mendonça
,
L.
,
da Costa
,
J. S.
, and
Sousa
,
J.
,
2003
, “
Fault Detection and Diagnosis Using Fuzzy Models
,”
European Control Conference (ECC)
,
Cambridge, UK
,
Sept. 1–4
.
31.
Peng
,
H.
,
Long
,
F.
, and
Ding
,
C.
,
2005
, “
Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
,”
IEEE Trans. Pattern Anal.
,
27
(
8
), pp.
1226
1238
. 10.1109/TPAMI.2005.159
32.
Ding
,
C.
, and
Peng
,
H.
,
2003
, “
Minimum Redundancy Feature Selection From Microarray Gene Expression Data
,”
J. Bioinf. Comput. Biology
,
3
(
2
), pp.
523
528
. 10.1109/CSB.2003.1227396
33.
Du
,
Z.
, and
Jin
,
X.
,
2006
, “
Detection and Diagnosis for Sensor Fault in HVAC Systems
,”
Energy Conversion and Management
,
48
(
3
), pp.
693
702
. 10.1016/j.enconman.2006.09.023
34.
Hawkins
,
D. M.
,
1980
,
Identification of Outliers
, 1st ed.,
Springer
,
Netherlands
.
35.
Rousseeuw
,
P. J.
, and
Leroy
,
A. M.
,
1987
,
Robust Regression and Outlier Detection
,
John Wiley & Sons, Inc.
36.
Chandola
,
V.
, and
Arindam Banerjee
,
V. K.
,
2009
, “
Anomaly Detection: A Survey
,”
ACM Comput. Surv.
,
41
(
3
), pp.
1
58
. 10.1145/1541880.1541882
37.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2013
,
The Elements of Statistical Learning
, 2nd ed.,
Springer Publishing
.
38.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
.
39.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2005
,
Gaussian Processes for Machine Learning
,
The MIT Press
.
40.
Jolliffe
,
I.
,
2006
,
Principal Component Analysis
,
Springer Publishing
.
41.
Jackson
,
J. E.
,
2003
,
A User's Guide to Principal Components
,
Wiley-Interscience
.
42.
Ester
,
M.
,
Kriegel
,
H.-P.
,
Sander
,
J.
, and
Xu
,
X.
,
1996
, “
A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases With Noise
,”
International Conference on KDD
.
43.
Bendechache
,
M.
,
Le-Khac
,
N.-A.
, and
Kechadi
,
M.-T.
,
2016
, “
Efficient Large Scale Clustering Based on Data Partitioning
,”
2016 IEEE International Conference on DSAA
.
44.
Ankerst
,
M.
,
Breunig
,
M. M.
,
Kriegel
,
H.-P.
, and
Sander
,
J.
,
1999
, “
OPTICS: Ordering Points to Identify the Clustering Structure
,”
ACM SIGMOD Record
,
28
(
2
), pp.
49
60
. 10.1145/304181.304187
45.
Zhang
,
R.
, and
Hong
,
T.
,
2017
, “
Modeling of HVAC Operational Faults in Building Performance Simulation
,”
Appl. Energy.
,
202
, pp.
178
188
. 10.1016/j.apenergy.2017.05.153
46.
Aghabozorgi
,
S.
,
Shirkhorshidi
,
A. S.
, and
Wah
,
T. Y.
,
2015
, “
Time-Series Clustering—A Decade Review
,”
Inf. Syst.
,
53
, pp.
16
38
. 10.1016/j.is.2015.04.007
48.
Liao
,
T.
,
2005
, “
Clustering of Time Series Data—A Survey
,”
Pattern Recogn.
,
38
(
11
), pp.
1857
1874
. 10.1016/j.patcog.2005.01.025
49.
Rani
,
S.
, and
Sikka
,
G.
,
2012
, “
Recent Techniques of Clustering of Time Series Data: A Survey
,”
Int. J. Comput. Applic.
,
52
(
15
), pp.
1
9
. 10.5120/8282-1278
50.
Shieh
,
J.
, and
Keogh
,
E.
,
2008
, “
ISAX: Indexing and Mining Terabyte Sized Time Series
,”
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’08, Association for Computing Machinery
,
New York, NY
, pp.
623
631
. https://doi.org/10.1145/1401890.1401966.
51.
Camerra
,
A.
,
Palpanas
,
T.
,
Shieh
,
J.
, and
Keogh
,
E.
,
2010
, “
iSAX 2.0: Indexing and Mining One Billion Time Series
,”
2010 IEEE International Conference on Data Mining
,
Sydney, NSW, Australia
, pp.
58
67
. http://dx.doi.org/10.1109/ICDM.2010.124
52.
Keogh
,
E.
,
Lin
,
J.
, and
Fu
,
A.
,
2005
, “
HOT SAX: Efficiently Finding the Most Unusual Time Series Subsequence
,”
Proceedings of the Fifth IEEE International Conference on Data Mining, ICDM ’05
,
Houston, TX, Nov. 27–30, IEEE Computer Society, USA
, pp.
226
233
. https://doi.org/10.1109/ICDM.2005.79
53.
Müller
,
M.
,
2007
,
Information Retrieval for Music and Motion
,
Springer Publishing
, pp.
69
94
.
54.
Iglesias
,
F.
, and
Kastner
,
W.
,
2013
, “
Analysis of Similarity Measures in Time Series Clustering for the Discovery of Building Energy Patterns
,”
Energies
,
6
(
2
), pp.
579
597
. 10.3390/en6020579
55.
Keogh
,
E.
, and
Ratanamahatana
,
C. A.
,
2005
, “
Exact Indexing of Dynamic Time Warping
,”
Knowl. Inform. Syst.
,
7
(
3
), pp.
358
386
. 10.1007/s10115-004-0154-9
56.
Fawcett
,
T.
,
2006
, “
An Introduction to ROC Analysis
,”
Pattern Recogn Letters.
,
27
(
8
), pp.
861
874
. 10.1016/j.patrec.2005.10.010
57.
Dobson
,
A. J.
, and
Barnett
,
A. G.
,
2008
,
An Introduction to Generalized Linear Models
, 3rd ed.,
Chapman and Hall/CRC
.
58.
Freedman
,
D. A.
,
2009
,
Statistical Models (Theory and Practice)
, 2nd ed.,
Cambridge University Press
,
Cambridge
.
59.
Shumway
,
R. H.
, and
Stoffer
,
D. S.
,
2006
,
Time Series Analysis and its Applications: With R Examples
,
Springer, New York
.
You do not currently have access to this content.