Abstract

Optimizing the placement of photovoltaic (PV) panels on residential buildings has the potential to significantly increase energy efficiency benefits to both homeowners and communities. Strategic PV placement can lower electricity costs by reducing the electricity fed from the grid during on-peak hours, while maintaining PV panel efficiency in terms of the amount of solar radiation received. In this article, we present a framework that identifies the ideal location of PV panels on residential rooftops. Our framework combines energy and environmental simulation, parametric modeling, and optimization to inform PV placement as it relates to and affects the entire community (in terms of both energy use and financial cost), as well as individual buildings. Ensuring that our framework accounts for shading from nearby buildings, different utility rate structures, and different buildings’ energy demand profiles means that existing communities and future housing developments can be optimized for energy savings and PV efficiency. The framework comprises two workflows, each contributing to optimal PV placement with a unique target: (a) maximizing PV panel efficiency (i.e., solar generation) and (b) minimizing operational energy cost considering utility rate structures for operational energy. We apply our framework to a residential community in Fort Collins, Colorado, to demonstrate the optimal PV placement, considering the two workflow targets. We present our results and illustrate the effect of PV location and orientation on solar energy production efficiency and operational energy cost.

References

References
1.
Peng
,
C.
,
Huang
,
Y.
, and
Wu
,
Z.
,
2011
, “
Building-Integrated Photovoltaics (BIPV) in Architectural Design in China
,”
Energy Build.
,
43
(
12
), pp.
3592
3598
. 10.1016/j.enbuild.2011.09.032
2.
Jelle
,
B. P.
, and
Breivik
,
C.
,
2012
, “
State-of-the-Art Building Integrated Photovoltaics
,”
Energy Proc.
,
20
, pp.
68
77
. 10.1016/j.egypro.2012.03.009
3.
Baljit
,
S.
,
Chan
,
H.-Y.
, and
Sopian
,
K.
,
2016
, “
Review of Building Integrated Applications of Photovoltaic and Solar Thermal Systems
,”
J. Cleaner Prod.
,
137
, pp.
677
689
. 10.1016/j.jclepro.2016.07.150
4.
Rodríguez
,
L. R.
,
Lissén
,
J. M. S.
,
Ramos
,
J. S.
,
Jara
,
E. Á. R.
, and
Domínguez
,
S. Á.
,
2016
, “
Analysis of the Economic Feasibility and Reduction of a Building’s Energy Consumption and Emissions When Integrating Hybrid Solar Thermal/PV/Micro-chp Systems
,”
Appl. Energy
,
165
, pp.
828
838
. 10.1016/j.apenergy.2015.12.080
5.
Scognamiglio
,
A.
,
Garde
,
F.
, and
Røstvik
,
H. N.
,
2014
, “
How Net Zero Energy Buildings and Cities Might Look Like? New Challenges for Passive Design and Renewables Design
,”
Energy Procedia
,
61
, pp.
1163
1166
. 10.1016/j.egypro.2014.11.1044
6.
Burns
,
J. E.
, and
Kang
,
J. -S.
,
2012
, “
Comparative Economic Analysis of Supporting Policies for Residential Solar PV in the United States: Solar Renewable Energy Credit (SREC) Potential
,”
Energy Policy
,
44
, pp.
217
225
. 10.1016/j.enpol.2012.01.045
7.
Wiginton
,
L.
,
Nguyen
,
H. T.
, and
Pearce
,
J. M.
,
2010
, “
Quantifying Rooftop Solar Photovoltaic Potential for Regional Renewable Energy Policy
,”
Comput. Environ. Urban Syst.
,
34
(
4
), pp.
345
357
. 10.1016/j.compenvurbsys.2010.01.001
8.
Amado
,
M.
, and
Poggi
,
F.
,
2012
, “
Towards Solar Urban Planning: A New Step for Better Energy Performance
,”
Energy Proc.
,
30
, pp.
1261
1273
. 10.1016/j.egypro.2012.11.139
9.
Takebayashi
,
H.
,
Ishii
,
E.
,
Moriyama
,
M.
,
Sakaki
,
A.
,
Nakajima
,
S.
, and
Ueda
,
H.
,
2015
, “
Study to Examine the Potential for Solar Energy Utilization Based on the Relationship Between Urban Morphology and Solar Radiation Gain on Building Rooftops and Wall Surfaces
,”
Sol. Energy
,
119
, pp.
362
369
. 10.1016/j.solener.2015.05.039
10.
Bergamasco
,
L.
, and
Asinari
,
P.
,
2011
, “
Scalable Methodology for the Photovoltaic Solar Energy Potential Assessment Based on Available Roof Surface Area: Application to Piedmont Region (Italy)
,”
Sol. Energy
,
85
(
5
), pp.
1041
1055
. 10.1016/j.solener.2011.02.022
11.
Paidipati
,
J.
,
Frantzis
,
L.
,
Sawyer
,
H.
, and
Kurrasch
,
A.
,
2008
, “
Rooftop Photovoltaics Market Penetration Scenarios
,”
Tech. Rep., National Renewable Energy Laboratory, NREL/SR-581-42306
.
12.
Moura
,
P. S.
,
López
,
G. L.
,
Moreno
,
J. I.
, and
De Almeida
,
A. T.
,
2013
, “
The Role of Smart Grids to Foster Energy Efficiency
,”
Energy Efficiency
,
6
(
4
), pp.
621
639
. 10.1007/s12053-013-9205-y
13.
Lang
,
T.
,
Ammann
,
D.
, and
Girod
,
B.
,
2016
, “
Profitability in Absence of Subsidies: A Techno-economic Analysis of Rooftop Photovoltaic Self-Consumption in Residential and Commercial Buildings
,”
Renew. Energy
,
87
, pp.
77
87
. 10.1016/j.renene.2015.09.059
14.
Kousksou
,
T.
,
Bruel
,
P.
,
Jamil
,
A.
,
El Rhafiki
,
T.
, and
Zeraouli
,
Y.
,
2014
, “
Energy Storage: Applications and Challenges
,”
Sol. Energy Mater. Sol. Cells
,
120
, pp.
59
80
. 10.1016/j.solmat.2013.08.015
15.
Brownsword
,
R.
,
Fleming
,
P.
,
Powell
,
J.
, and
Pearsall
,
N.
,
2005
, “
Sustainable Cities—Modelling Urban Energy Supply and Demand
,”
Appl. Energy
,
82
(
2
), pp.
167
180
. 10.1016/j.apenergy.2004.10.005
16.
Lund
,
P.
,
2012
, “
Large-Scale Urban Renewable Electricity Schemes—Integration and Interfacing Aspects
,”
Energy Convers. Manage.
,
63
, pp.
162
172
. 10.1016/j.enconman.2012.01.037
17.
Wegertseder
,
P.
,
Lund
,
P.
,
Mikkola
,
J.
, and
Alvarado
,
R. G.
,
2016
, “
Combining Solar Resource Mapping and Energy System Integration Methods for Realistic Valuation of Urban Solar Energy Potential
,”
Sol. Energy
,
135
, pp.
325
336
. 10.1016/j.solener.2016.05.061
18.
Brito
,
M.
,
Freitas
,
S.
,
Guimarães
,
S.
,
Catita
,
C.
, and
Redweik
,
P.
,
2017
, “
The Importance of Facades for the Solar PV Potential of a Mediterranean City Using Lidar Data
,”
Renew. Energy
,
111
, pp.
85
94
. 10.1016/j.renene.2017.03.085
19.
Reinhart
,
C. F.
, and
Davila
,
C. C.
,
2016
, “
Urban Building Energy Modeling—A Review of a Nascent Field
,”
Build. Environ.
,
97
, pp.
196
202
. 10.1016/j.buildenv.2015.12.001
20.
El Kontar
,
R.
, and
Jin
,
X.
,
2020
, “
Optimal Efficiency and Operational Cost Savings: A Framework for Automated Rooftop PV Placement
,”
Proceedings of 2020 Building Performance Analysis Conference and SimBuild
,
Chicago, IL
,
Sept. 29–Oct. 1
.
21.
Christensen
,
C.
,
Horowitz
,
S.
,
Givler
,
T.
,
Courtney
,
A.
, and
Barker
,
G.
,
2005
, “
BEopt(TM): Software for Identifying Optimal Building Designs on the Path to Zero Net Energy
,” Technical Report, National Renewable Energy Laboratory, Golden, CO.
22.
Dobos
,
A. P.
,
2014
,
PVWatts Version 5 Manual
, Tech. Rep,
National Renewable Energy Laboratory
,
Golden, CO
.
23.
Vignola
,
F.
,
2004
, “
Using Sun Path Charts to Estimate the Effect of Shading on V Arrays
,”
Proceedings of the Solar Conference
,
Portland, OR
,
July 11–14
, pp.
27
32
.
24.
Rutten
,
D.
,
2013
, “
Galapagos: On the Logic and Limitations of Generic Solvers
,”
Archit. Des.
,
83
(
2
), pp.
132
135
. 10.1002/ad.1568
25.
SIA
,
2006
,
SIA Merkblatt 2024: Standard-Nutzungsbedingungen für die Energie-und Gebäudetechnik
,
Swiss Society of Engineers and Architects
,
Zürich
.
You do not currently have access to this content.